Integral de $$$9 \cdot 15^{- x} x^{2}$$$

A calculadora encontrará a integral/antiderivada de $$$9 \cdot 15^{- x} x^{2}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int 9 \cdot 15^{- x} x^{2}\, dx$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=9$$$ e $$$f{\left(x \right)} = 15^{- x} x^{2}$$$:

$${\color{red}{\int{9 \cdot 15^{- x} x^{2} d x}}} = {\color{red}{\left(9 \int{15^{- x} x^{2} d x}\right)}}$$

Para a integral $$$\int{15^{- x} x^{2} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sejam $$$\operatorname{u}=x^{2}$$$ e $$$\operatorname{dv}=15^{- x} dx$$$.

Então $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{15^{- x} d x}=- \frac{15^{- x}}{\ln{\left(15 \right)}}$$$ (os passos podem ser vistos »).

Logo,

$$9 {\color{red}{\int{15^{- x} x^{2} d x}}}=9 {\color{red}{\left(x^{2} \cdot \left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right)-\int{\left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right) \cdot 2 x d x}\right)}}=9 {\color{red}{\left(- \int{\left(- \frac{2 \cdot 15^{- x} x}{\ln{\left(15 \right)}}\right)d x} - \frac{15^{- x} x^{2}}{\ln{\left(15 \right)}}\right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=- \frac{2}{\ln{\left(15 \right)}}$$$ e $$$f{\left(x \right)} = 15^{- x} x$$$:

$$- 9 {\color{red}{\int{\left(- \frac{2 \cdot 15^{- x} x}{\ln{\left(15 \right)}}\right)d x}}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = - 9 {\color{red}{\left(- \frac{2 \int{15^{- x} x d x}}{\ln{\left(15 \right)}}\right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$

Para a integral $$$\int{15^{- x} x d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sejam $$$\operatorname{u}=x$$$ e $$$\operatorname{dv}=15^{- x} dx$$$.

Então $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{15^{- x} d x}=- \frac{15^{- x}}{\ln{\left(15 \right)}}$$$ (os passos podem ser vistos »).

Assim,

$$\frac{18 {\color{red}{\int{15^{- x} x d x}}}}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}=\frac{18 {\color{red}{\left(x \cdot \left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right)-\int{\left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right) \cdot 1 d x}\right)}}}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}=\frac{18 {\color{red}{\left(- \int{\left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right)d x} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}}}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=- \frac{1}{\ln{\left(15 \right)}}$$$ e $$$f{\left(x \right)} = 15^{- x}$$$:

$$\frac{18 \left(- {\color{red}{\int{\left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right)d x}}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = \frac{18 \left(- {\color{red}{\left(- \frac{\int{15^{- x} d x}}{\ln{\left(15 \right)}}\right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$

Seja $$$u=- x$$$.

Então $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (veja os passos »), e obtemos $$$dx = - du$$$.

Portanto,

$$\frac{18 \left(\frac{{\color{red}{\int{15^{- x} d x}}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = \frac{18 \left(\frac{{\color{red}{\int{\left(- 15^{u}\right)d u}}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=-1$$$ e $$$f{\left(u \right)} = 15^{u}$$$:

$$\frac{18 \left(\frac{{\color{red}{\int{\left(- 15^{u}\right)d u}}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = \frac{18 \left(\frac{{\color{red}{\left(- \int{15^{u} d u}\right)}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=15$$$:

$$\frac{18 \left(- \frac{{\color{red}{\int{15^{u} d u}}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = \frac{18 \left(- \frac{{\color{red}{\frac{15^{u}}{\ln{\left(15 \right)}}}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$

Recorde que $$$u=- x$$$:

$$\frac{18 \left(- \frac{15^{{\color{red}{u}}}}{\ln{\left(15 \right)}^{2}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = \frac{18 \left(- \frac{15^{{\color{red}{\left(- x\right)}}}}{\ln{\left(15 \right)}^{2}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$

Portanto,

$$\int{9 \cdot 15^{- x} x^{2} d x} = \frac{18 \left(- \frac{15^{- x} x}{\ln{\left(15 \right)}} - \frac{15^{- x}}{\ln{\left(15 \right)}^{2}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$

Simplifique:

$$\int{9 \cdot 15^{- x} x^{2} d x} = - \frac{9 \cdot 225^{x} 3375^{- x} \left(x^{2} \ln{\left(15 \right)}^{2} + 2 x \ln{\left(15 \right)} + 2\right)}{\ln{\left(15 \right)}^{3}}$$

Adicione a constante de integração:

$$\int{9 \cdot 15^{- x} x^{2} d x} = - \frac{9 \cdot 225^{x} 3375^{- x} \left(x^{2} \ln{\left(15 \right)}^{2} + 2 x \ln{\left(15 \right)} + 2\right)}{\ln{\left(15 \right)}^{3}}+C$$

Resposta

$$$\int 9 \cdot 15^{- x} x^{2}\, dx = - \frac{9 \cdot 225^{x} 3375^{- x} \left(x^{2} \ln^{2}\left(15\right) + 2 x \ln\left(15\right) + 2\right)}{\ln^{3}\left(15\right)} + C$$$A


Please try a new game Rotatly