Integral de $$$9 \tan^{2}{\left(x \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int 9 \tan^{2}{\left(x \right)}\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=9$$$ e $$$f{\left(x \right)} = \tan^{2}{\left(x \right)}$$$:
$${\color{red}{\int{9 \tan^{2}{\left(x \right)} d x}}} = {\color{red}{\left(9 \int{\tan^{2}{\left(x \right)} d x}\right)}}$$
Seja $$$u=\tan{\left(x \right)}$$$.
Então $$$x=\operatorname{atan}{\left(u \right)}$$$ e $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (as etapas podem ser vistas »).
Assim,
$$9 {\color{red}{\int{\tan^{2}{\left(x \right)} d x}}} = 9 {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}$$
Reescreva e separe a fração:
$$9 {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = 9 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$
Integre termo a termo:
$$9 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = 9 {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
Aplique a regra da constante $$$\int c\, du = c u$$$ usando $$$c=1$$$:
$$- 9 \int{\frac{1}{u^{2} + 1} d u} + 9 {\color{red}{\int{1 d u}}} = - 9 \int{\frac{1}{u^{2} + 1} d u} + 9 {\color{red}{u}}$$
A integral de $$$\frac{1}{u^{2} + 1}$$$ é $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$9 u - 9 {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = 9 u - 9 {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
Recorde que $$$u=\tan{\left(x \right)}$$$:
$$- 9 \operatorname{atan}{\left({\color{red}{u}} \right)} + 9 {\color{red}{u}} = - 9 \operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)} + 9 {\color{red}{\tan{\left(x \right)}}}$$
Portanto,
$$\int{9 \tan^{2}{\left(x \right)} d x} = 9 \tan{\left(x \right)} - 9 \operatorname{atan}{\left(\tan{\left(x \right)} \right)}$$
Simplifique:
$$\int{9 \tan^{2}{\left(x \right)} d x} = - 9 x + 9 \tan{\left(x \right)}$$
Adicione a constante de integração:
$$\int{9 \tan^{2}{\left(x \right)} d x} = - 9 x + 9 \tan{\left(x \right)}+C$$
Resposta
$$$\int 9 \tan^{2}{\left(x \right)}\, dx = \left(- 9 x + 9 \tan{\left(x \right)}\right) + C$$$A