Integral de $$$\frac{6}{x^{2} - 22 x}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{6}{x^{2} - 22 x}\, dx$$$.
Solução
Simplifique o integrando:
$${\color{red}{\int{\frac{6}{x^{2} - 22 x} d x}}} = {\color{red}{\int{\frac{6}{x \left(x - 22\right)} d x}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=6$$$ e $$$f{\left(x \right)} = \frac{1}{x \left(x - 22\right)}$$$:
$${\color{red}{\int{\frac{6}{x \left(x - 22\right)} d x}}} = {\color{red}{\left(6 \int{\frac{1}{x \left(x - 22\right)} d x}\right)}}$$
Efetue a decomposição em frações parciais (os passos podem ser vistos »):
$$6 {\color{red}{\int{\frac{1}{x \left(x - 22\right)} d x}}} = 6 {\color{red}{\int{\left(\frac{1}{22 \left(x - 22\right)} - \frac{1}{22 x}\right)d x}}}$$
Integre termo a termo:
$$6 {\color{red}{\int{\left(\frac{1}{22 \left(x - 22\right)} - \frac{1}{22 x}\right)d x}}} = 6 {\color{red}{\left(- \int{\frac{1}{22 x} d x} + \int{\frac{1}{22 \left(x - 22\right)} d x}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{22}$$$ e $$$f{\left(x \right)} = \frac{1}{x}$$$:
$$6 \int{\frac{1}{22 \left(x - 22\right)} d x} - 6 {\color{red}{\int{\frac{1}{22 x} d x}}} = 6 \int{\frac{1}{22 \left(x - 22\right)} d x} - 6 {\color{red}{\left(\frac{\int{\frac{1}{x} d x}}{22}\right)}}$$
A integral de $$$\frac{1}{x}$$$ é $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$6 \int{\frac{1}{22 \left(x - 22\right)} d x} - \frac{3 {\color{red}{\int{\frac{1}{x} d x}}}}{11} = 6 \int{\frac{1}{22 \left(x - 22\right)} d x} - \frac{3 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{11}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{22}$$$ e $$$f{\left(x \right)} = \frac{1}{x - 22}$$$:
$$- \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + 6 {\color{red}{\int{\frac{1}{22 \left(x - 22\right)} d x}}} = - \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + 6 {\color{red}{\left(\frac{\int{\frac{1}{x - 22} d x}}{22}\right)}}$$
Seja $$$u=x - 22$$$.
Então $$$du=\left(x - 22\right)^{\prime }dx = 1 dx$$$ (veja os passos »), e obtemos $$$dx = du$$$.
Portanto,
$$- \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + \frac{3 {\color{red}{\int{\frac{1}{x - 22} d x}}}}{11} = - \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + \frac{3 {\color{red}{\int{\frac{1}{u} d u}}}}{11}$$
A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + \frac{3 {\color{red}{\int{\frac{1}{u} d u}}}}{11} = - \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + \frac{3 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{11}$$
Recorde que $$$u=x - 22$$$:
$$- \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + \frac{3 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{11} = - \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + \frac{3 \ln{\left(\left|{{\color{red}{\left(x - 22\right)}}}\right| \right)}}{11}$$
Portanto,
$$\int{\frac{6}{x^{2} - 22 x} d x} = - \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + \frac{3 \ln{\left(\left|{x - 22}\right| \right)}}{11}$$
Simplifique:
$$\int{\frac{6}{x^{2} - 22 x} d x} = \frac{3 \left(- \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 22}\right| \right)}\right)}{11}$$
Adicione a constante de integração:
$$\int{\frac{6}{x^{2} - 22 x} d x} = \frac{3 \left(- \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 22}\right| \right)}\right)}{11}+C$$
Resposta
$$$\int \frac{6}{x^{2} - 22 x}\, dx = \frac{3 \left(- \ln\left(\left|{x}\right|\right) + \ln\left(\left|{x - 22}\right|\right)\right)}{11} + C$$$A