Integral de $$$4 \sin^{3}{\left(7 x \right)} \cos{\left(7 x \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int 4 \sin^{3}{\left(7 x \right)} \cos{\left(7 x \right)}\, dx$$$.
Solução
Aplique a fórmula de redução de potência $$$\sin^{3}{\left(\alpha \right)} = \frac{3 \sin{\left(\alpha \right)}}{4} - \frac{\sin{\left(3 \alpha \right)}}{4}$$$ com $$$\alpha=7 x$$$:
$${\color{red}{\int{4 \sin^{3}{\left(7 x \right)} \cos{\left(7 x \right)} d x}}} = {\color{red}{\int{\left(3 \sin{\left(7 x \right)} - \sin{\left(21 x \right)}\right) \cos{\left(7 x \right)} d x}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{4}$$$ e $$$f{\left(x \right)} = 4 \left(3 \sin{\left(7 x \right)} - \sin{\left(21 x \right)}\right) \cos{\left(7 x \right)}$$$:
$${\color{red}{\int{\left(3 \sin{\left(7 x \right)} - \sin{\left(21 x \right)}\right) \cos{\left(7 x \right)} d x}}} = {\color{red}{\left(\frac{\int{4 \left(3 \sin{\left(7 x \right)} - \sin{\left(21 x \right)}\right) \cos{\left(7 x \right)} d x}}{4}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{4 \left(3 \sin{\left(7 x \right)} - \sin{\left(21 x \right)}\right) \cos{\left(7 x \right)} d x}}}}{4} = \frac{{\color{red}{\int{\left(12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} - 4 \sin{\left(21 x \right)} \cos{\left(7 x \right)}\right)d x}}}}{4}$$
Integre termo a termo:
$$\frac{{\color{red}{\int{\left(12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} - 4 \sin{\left(21 x \right)} \cos{\left(7 x \right)}\right)d x}}}}{4} = \frac{{\color{red}{\left(\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x} - \int{4 \sin{\left(21 x \right)} \cos{\left(7 x \right)} d x}\right)}}}{4}$$
Reescreva $$$\sin\left(21 x \right)\cos\left(7 x \right)$$$ utilizando a fórmula $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ com $$$\alpha=21 x$$$ e $$$\beta=7 x$$$:
$$\frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{4 \sin{\left(21 x \right)} \cos{\left(7 x \right)} d x}}}}{4} = \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{\left(2 \sin{\left(14 x \right)} + 2 \sin{\left(28 x \right)}\right)d x}}}}{4}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = 4 \sin{\left(14 x \right)} + 4 \sin{\left(28 x \right)}$$$:
$$\frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{\left(2 \sin{\left(14 x \right)} + 2 \sin{\left(28 x \right)}\right)d x}}}}{4} = \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\left(\frac{\int{\left(4 \sin{\left(14 x \right)} + 4 \sin{\left(28 x \right)}\right)d x}}{2}\right)}}}{4}$$
Integre termo a termo:
$$\frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{\left(4 \sin{\left(14 x \right)} + 4 \sin{\left(28 x \right)}\right)d x}}}}{8} = \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\left(\int{4 \sin{\left(14 x \right)} d x} + \int{4 \sin{\left(28 x \right)} d x}\right)}}}{8}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=4$$$ e $$$f{\left(x \right)} = \sin{\left(14 x \right)}$$$:
$$\frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} - \frac{{\color{red}{\int{4 \sin{\left(14 x \right)} d x}}}}{8} = \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} - \frac{{\color{red}{\left(4 \int{\sin{\left(14 x \right)} d x}\right)}}}{8}$$
Seja $$$u=14 x$$$.
Então $$$du=\left(14 x\right)^{\prime }dx = 14 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{14}$$$.
Logo,
$$\frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} - \frac{{\color{red}{\int{\sin{\left(14 x \right)} d x}}}}{2} = \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{14} d u}}}}{2}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{14}$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$\frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{14} d u}}}}{2} = \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{14}\right)}}}{2}$$
A integral do seno é $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{28} = \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{28}$$
Recorde que $$$u=14 x$$$:
$$\frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} + \frac{\cos{\left({\color{red}{u}} \right)}}{28} = \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} + \frac{\cos{\left({\color{red}{\left(14 x\right)}} \right)}}{28}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=4$$$ e $$$f{\left(x \right)} = \sin{\left(28 x \right)}$$$:
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{4 \sin{\left(28 x \right)} d x}}}}{8} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\left(4 \int{\sin{\left(28 x \right)} d x}\right)}}}{8}$$
Seja $$$u=28 x$$$.
Então $$$du=\left(28 x\right)^{\prime }dx = 28 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{28}$$$.
A integral torna-se
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{\sin{\left(28 x \right)} d x}}}}{2} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{28} d u}}}}{2}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{28}$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{28} d u}}}}{2} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{28}\right)}}}{2}$$
A integral do seno é $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{56} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{56}$$
Recorde que $$$u=28 x$$$:
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} + \frac{\cos{\left({\color{red}{u}} \right)}}{56} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} + \frac{\cos{\left({\color{red}{\left(28 x\right)}} \right)}}{56}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=12$$$ e $$$f{\left(x \right)} = \sin{\left(7 x \right)} \cos{\left(7 x \right)}$$$:
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + \frac{{\color{red}{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}}}{4} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + \frac{{\color{red}{\left(12 \int{\sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}\right)}}}{4}$$
Seja $$$u=\sin{\left(7 x \right)}$$$.
Então $$$du=\left(\sin{\left(7 x \right)}\right)^{\prime }dx = 7 \cos{\left(7 x \right)} dx$$$ (veja os passos »), e obtemos $$$\cos{\left(7 x \right)} dx = \frac{du}{7}$$$.
A integral torna-se
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + 3 {\color{red}{\int{\sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + 3 {\color{red}{\int{\frac{u}{7} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{7}$$$ e $$$f{\left(u \right)} = u$$$:
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + 3 {\color{red}{\int{\frac{u}{7} d u}}} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + 3 {\color{red}{\left(\frac{\int{u d u}}{7}\right)}}$$
Aplique a regra da potência $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + \frac{3 {\color{red}{\int{u d u}}}}{7}=\frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + \frac{3 {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{7}=\frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + \frac{3 {\color{red}{\left(\frac{u^{2}}{2}\right)}}}{7}$$
Recorde que $$$u=\sin{\left(7 x \right)}$$$:
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + \frac{3 {\color{red}{u}}^{2}}{14} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + \frac{3 {\color{red}{\sin{\left(7 x \right)}}}^{2}}{14}$$
Portanto,
$$\int{4 \sin^{3}{\left(7 x \right)} \cos{\left(7 x \right)} d x} = \frac{3 \sin^{2}{\left(7 x \right)}}{14} + \frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56}$$
Simplifique:
$$\int{4 \sin^{3}{\left(7 x \right)} \cos{\left(7 x \right)} d x} = \frac{\sin^{4}{\left(7 x \right)}}{7} + \frac{3}{56}$$
Adicione a constante de integração (e remova a constante da expressão):
$$\int{4 \sin^{3}{\left(7 x \right)} \cos{\left(7 x \right)} d x} = \frac{\sin^{4}{\left(7 x \right)}}{7}+C$$
Resposta
$$$\int 4 \sin^{3}{\left(7 x \right)} \cos{\left(7 x \right)}\, dx = \frac{\sin^{4}{\left(7 x \right)}}{7} + C$$$A