Integral de $$$\frac{25}{\left(x - 5\right)^{2}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{25}{\left(x - 5\right)^{2}}\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=25$$$ e $$$f{\left(x \right)} = \frac{1}{\left(x - 5\right)^{2}}$$$:
$${\color{red}{\int{\frac{25}{\left(x - 5\right)^{2}} d x}}} = {\color{red}{\left(25 \int{\frac{1}{\left(x - 5\right)^{2}} d x}\right)}}$$
Seja $$$u=x - 5$$$.
Então $$$du=\left(x - 5\right)^{\prime }dx = 1 dx$$$ (veja os passos »), e obtemos $$$dx = du$$$.
A integral torna-se
$$25 {\color{red}{\int{\frac{1}{\left(x - 5\right)^{2}} d x}}} = 25 {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$
Aplique a regra da potência $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=-2$$$:
$$25 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=25 {\color{red}{\int{u^{-2} d u}}}=25 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=25 {\color{red}{\left(- u^{-1}\right)}}=25 {\color{red}{\left(- \frac{1}{u}\right)}}$$
Recorde que $$$u=x - 5$$$:
$$- 25 {\color{red}{u}}^{-1} = - 25 {\color{red}{\left(x - 5\right)}}^{-1}$$
Portanto,
$$\int{\frac{25}{\left(x - 5\right)^{2}} d x} = - \frac{25}{x - 5}$$
Adicione a constante de integração:
$$\int{\frac{25}{\left(x - 5\right)^{2}} d x} = - \frac{25}{x - 5}+C$$
Resposta
$$$\int \frac{25}{\left(x - 5\right)^{2}}\, dx = - \frac{25}{x - 5} + C$$$A