Integral de $$$- 2 x^{3} \sin{\left(1 \right)}$$$

A calculadora encontrará a integral/antiderivada de $$$- 2 x^{3} \sin{\left(1 \right)}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \left(- 2 x^{3} \sin{\left(1 \right)}\right)\, dx$$$.

As funções trigonométricas esperam o argumento em radianos. Para inserir o argumento em graus, multiplique-o por pi/180, por exemplo, escreva 45° como 45*pi/180, ou use a função correspondente acrescentando 'd', por exemplo, escreva sin(45°) como sind(45).

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=- 2 \sin{\left(1 \right)}$$$ e $$$f{\left(x \right)} = x^{3}$$$:

$${\color{red}{\int{\left(- 2 x^{3} \sin{\left(1 \right)}\right)d x}}} = {\color{red}{\left(- 2 \sin{\left(1 \right)} \int{x^{3} d x}\right)}}$$

Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=3$$$:

$$- 2 \sin{\left(1 \right)} {\color{red}{\int{x^{3} d x}}}=- 2 \sin{\left(1 \right)} {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- 2 \sin{\left(1 \right)} {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

Portanto,

$$\int{\left(- 2 x^{3} \sin{\left(1 \right)}\right)d x} = - \frac{x^{4} \sin{\left(1 \right)}}{2}$$

Adicione a constante de integração:

$$\int{\left(- 2 x^{3} \sin{\left(1 \right)}\right)d x} = - \frac{x^{4} \sin{\left(1 \right)}}{2}+C$$

Resposta

$$$\int \left(- 2 x^{3} \sin{\left(1 \right)}\right)\, dx = - \frac{x^{4} \sin{\left(1 \right)}}{2} + C$$$A


Please try a new game Rotatly