Integral de $$$\frac{a^{3} \ln\left(x\right)}{x}$$$ em relação a $$$e$$$

A calculadora encontrará a integral/primitiva de $$$\frac{a^{3} \ln\left(x\right)}{x}$$$ em relação a $$$e$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{a^{3} \ln\left(x\right)}{x}\, de$$$.

Solução

Aplique a regra da constante $$$\int c\, de = c e$$$ usando $$$c=\frac{a^{3} \ln{\left(x \right)}}{x}$$$:

$${\color{red}{\int{\frac{a^{3} \ln{\left(x \right)}}{x} d e}}} = {\color{red}{\frac{a^{3} e \ln{\left(x \right)}}{x}}}$$

Portanto,

$$\int{\frac{a^{3} \ln{\left(x \right)}}{x} d e} = \frac{a^{3} e \ln{\left(x \right)}}{x}$$

Adicione a constante de integração:

$$\int{\frac{a^{3} \ln{\left(x \right)}}{x} d e} = \frac{a^{3} e \ln{\left(x \right)}}{x}+C$$

Resposta

$$$\int \frac{a^{3} \ln\left(x\right)}{x}\, de = \frac{a^{3} e \ln\left(x\right)}{x} + C$$$A


Please try a new game Rotatly