Integral de $$$\frac{1}{\cosh{\left(x \right)}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{1}{\cosh{\left(x \right)}}\, dx$$$.
Solução
Reescreva a função hiperbólica em termos da função exponencial:
$${\color{red}{\int{\frac{1}{\cosh{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{\frac{e^{x}}{2} + \frac{e^{- x}}{2}} d x}}}$$
Simplifique o integrando:
$${\color{red}{\int{\frac{1}{\frac{e^{x}}{2} + \frac{e^{- x}}{2}} d x}}} = {\color{red}{\int{\frac{2}{e^{x} + e^{- x}} d x}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2$$$ e $$$f{\left(x \right)} = \frac{1}{e^{x} + e^{- x}}$$$:
$${\color{red}{\int{\frac{2}{e^{x} + e^{- x}} d x}}} = {\color{red}{\left(2 \int{\frac{1}{e^{x} + e^{- x}} d x}\right)}}$$
Simplify:
$$2 {\color{red}{\int{\frac{1}{e^{x} + e^{- x}} d x}}} = 2 {\color{red}{\int{\frac{e^{x}}{e^{2 x} + 1} d x}}}$$
Seja $$$u=e^{x}$$$.
Então $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (veja os passos »), e obtemos $$$e^{x} dx = du$$$.
Logo,
$$2 {\color{red}{\int{\frac{e^{x}}{e^{2 x} + 1} d x}}} = 2 {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}$$
A integral de $$$\frac{1}{u^{2} + 1}$$$ é $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$2 {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = 2 {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
Recorde que $$$u=e^{x}$$$:
$$2 \operatorname{atan}{\left({\color{red}{u}} \right)} = 2 \operatorname{atan}{\left({\color{red}{e^{x}}} \right)}$$
Portanto,
$$\int{\frac{1}{\cosh{\left(x \right)}} d x} = 2 \operatorname{atan}{\left(e^{x} \right)}$$
Adicione a constante de integração:
$$\int{\frac{1}{\cosh{\left(x \right)}} d x} = 2 \operatorname{atan}{\left(e^{x} \right)}+C$$
Resposta
$$$\int \frac{1}{\cosh{\left(x \right)}}\, dx = 2 \operatorname{atan}{\left(e^{x} \right)} + C$$$A