Integral de $$$2^{- \frac{t}{5}}$$$

A calculadora encontrará a integral/antiderivada de $$$2^{- \frac{t}{5}}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int 2^{- \frac{t}{5}}\, dt$$$.

Solução

A entrada é reescrita como: $$$\int{2^{- \frac{t}{5}} d t}=\int{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t} d t}$$$.

Apply the exponential rule $$$\int{a^{t} d t} = \frac{a^{t}}{\ln{\left(a \right)}}$$$ with $$$a=\frac{2^{\frac{4}{5}}}{2}$$$:

$${\color{red}{\int{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t} d t}}} = {\color{red}{\frac{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t}}{\ln{\left(\frac{2^{\frac{4}{5}}}{2} \right)}}}}$$

Portanto,

$$\int{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t} d t} = \frac{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t}}{\ln{\left(\frac{2^{\frac{4}{5}}}{2} \right)}}$$

Simplifique:

$$\int{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t} d t} = - \frac{5 \cdot 2^{- \frac{t}{5}}}{\ln{\left(2 \right)}}$$

Adicione a constante de integração:

$$\int{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t} d t} = - \frac{5 \cdot 2^{- \frac{t}{5}}}{\ln{\left(2 \right)}}+C$$

Resposta

$$$\int 2^{- \frac{t}{5}}\, dt = - \frac{5 \cdot 2^{- \frac{t}{5}}}{\ln\left(2\right)} + C$$$A


Please try a new game Rotatly