Integral de $$$\frac{1}{x^{2} - x}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{1}{x^{2} - x}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{1}{x^{2} - x}\, dx$$$.

Solução

Efetue a decomposição em frações parciais (os passos podem ser vistos »):

$${\color{red}{\int{\frac{1}{x^{2} - x} d x}}} = {\color{red}{\int{\left(\frac{1}{x - 1} - \frac{1}{x}\right)d x}}}$$

Integre termo a termo:

$${\color{red}{\int{\left(\frac{1}{x - 1} - \frac{1}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x} d x} + \int{\frac{1}{x - 1} d x}\right)}}$$

Seja $$$u=x - 1$$$.

Então $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (veja os passos »), e obtemos $$$dx = du$$$.

Portanto,

$$- \int{\frac{1}{x} d x} + {\color{red}{\int{\frac{1}{x - 1} d x}}} = - \int{\frac{1}{x} d x} + {\color{red}{\int{\frac{1}{u} d u}}}$$

A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \int{\frac{1}{x} d x} + {\color{red}{\int{\frac{1}{u} d u}}} = - \int{\frac{1}{x} d x} + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Recorde que $$$u=x - 1$$$:

$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} - \int{\frac{1}{x} d x} = \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)} - \int{\frac{1}{x} d x}$$

A integral de $$$\frac{1}{x}$$$ é $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$\ln{\left(\left|{x - 1}\right| \right)} - {\color{red}{\int{\frac{1}{x} d x}}} = \ln{\left(\left|{x - 1}\right| \right)} - {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

Portanto,

$$\int{\frac{1}{x^{2} - x} d x} = - \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 1}\right| \right)}$$

Adicione a constante de integração:

$$\int{\frac{1}{x^{2} - x} d x} = - \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 1}\right| \right)}+C$$

Resposta

$$$\int \frac{1}{x^{2} - x}\, dx = \left(- \ln\left(\left|{x}\right|\right) + \ln\left(\left|{x - 1}\right|\right)\right) + C$$$A


Please try a new game Rotatly