Integral de $$$\frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}}\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{\sqrt{2}}{2 \sqrt{\pi}}$$$ e $$$f{\left(x \right)} = e^{- \frac{x^{2}}{2}}$$$:
$${\color{red}{\int{\frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}} d x}}} = {\color{red}{\left(\frac{\sqrt{2} \int{e^{- \frac{x^{2}}{2}} d x}}{2 \sqrt{\pi}}\right)}}$$
Seja $$$u=\frac{\sqrt{2} x}{2}$$$.
Então $$$du=\left(\frac{\sqrt{2} x}{2}\right)^{\prime }dx = \frac{\sqrt{2}}{2} dx$$$ (veja os passos »), e obtemos $$$dx = \sqrt{2} du$$$.
Logo,
$$\frac{\sqrt{2} {\color{red}{\int{e^{- \frac{x^{2}}{2}} d x}}}}{2 \sqrt{\pi}} = \frac{\sqrt{2} {\color{red}{\int{\sqrt{2} e^{- u^{2}} d u}}}}{2 \sqrt{\pi}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\sqrt{2}$$$ e $$$f{\left(u \right)} = e^{- u^{2}}$$$:
$$\frac{\sqrt{2} {\color{red}{\int{\sqrt{2} e^{- u^{2}} d u}}}}{2 \sqrt{\pi}} = \frac{\sqrt{2} {\color{red}{\sqrt{2} \int{e^{- u^{2}} d u}}}}{2 \sqrt{\pi}}$$
Esta integral (Função erro) não possui forma fechada:
$$\frac{{\color{red}{\int{e^{- u^{2}} d u}}}}{\sqrt{\pi}} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}}{\sqrt{\pi}}$$
Recorde que $$$u=\frac{\sqrt{2} x}{2}$$$:
$$\frac{\operatorname{erf}{\left({\color{red}{u}} \right)}}{2} = \frac{\operatorname{erf}{\left({\color{red}{\left(\frac{\sqrt{2} x}{2}\right)}} \right)}}{2}$$
Portanto,
$$\int{\frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}} d x} = \frac{\operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}$$
Adicione a constante de integração:
$$\int{\frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}} d x} = \frac{\operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}+C$$
Resposta
$$$\int \frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}}\, dx = \frac{\operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2} + C$$$A