Integral de $$$\frac{1}{\left(g - 27\right)^{\frac{2}{3}}}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{1}{\left(g - 27\right)^{\frac{2}{3}}}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{1}{\left(g - 27\right)^{\frac{2}{3}}}\, dg$$$.

Solução

Seja $$$u=g - 27$$$.

Então $$$du=\left(g - 27\right)^{\prime }dg = 1 dg$$$ (veja os passos »), e obtemos $$$dg = du$$$.

Logo,

$${\color{red}{\int{\frac{1}{\left(g - 27\right)^{\frac{2}{3}}} d g}}} = {\color{red}{\int{\frac{1}{u^{\frac{2}{3}}} d u}}}$$

Aplique a regra da potência $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=- \frac{2}{3}$$$:

$${\color{red}{\int{\frac{1}{u^{\frac{2}{3}}} d u}}}={\color{red}{\int{u^{- \frac{2}{3}} d u}}}={\color{red}{\frac{u^{- \frac{2}{3} + 1}}{- \frac{2}{3} + 1}}}={\color{red}{\left(3 u^{\frac{1}{3}}\right)}}={\color{red}{\left(3 \sqrt[3]{u}\right)}}$$

Recorde que $$$u=g - 27$$$:

$$3 \sqrt[3]{{\color{red}{u}}} = 3 \sqrt[3]{{\color{red}{\left(g - 27\right)}}}$$

Portanto,

$$\int{\frac{1}{\left(g - 27\right)^{\frac{2}{3}}} d g} = 3 \sqrt[3]{g - 27}$$

Adicione a constante de integração:

$$\int{\frac{1}{\left(g - 27\right)^{\frac{2}{3}}} d g} = 3 \sqrt[3]{g - 27}+C$$

Resposta

$$$\int \frac{1}{\left(g - 27\right)^{\frac{2}{3}}}\, dg = 3 \sqrt[3]{g - 27} + C$$$A


Please try a new game Rotatly