Integral de $$$\frac{\sqrt{11} e^{- \frac{x}{2}}}{22}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{\sqrt{11} e^{- \frac{x}{2}}}{22}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{\sqrt{11} e^{- \frac{x}{2}}}{22}\, dx$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{\sqrt{11}}{22}$$$ e $$$f{\left(x \right)} = e^{- \frac{x}{2}}$$$:

$${\color{red}{\int{\frac{\sqrt{11} e^{- \frac{x}{2}}}{22} d x}}} = {\color{red}{\left(\frac{\sqrt{11} \int{e^{- \frac{x}{2}} d x}}{22}\right)}}$$

Seja $$$u=- \frac{x}{2}$$$.

Então $$$du=\left(- \frac{x}{2}\right)^{\prime }dx = - \frac{dx}{2}$$$ (veja os passos »), e obtemos $$$dx = - 2 du$$$.

Logo,

$$\frac{\sqrt{11} {\color{red}{\int{e^{- \frac{x}{2}} d x}}}}{22} = \frac{\sqrt{11} {\color{red}{\int{\left(- 2 e^{u}\right)d u}}}}{22}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=-2$$$ e $$$f{\left(u \right)} = e^{u}$$$:

$$\frac{\sqrt{11} {\color{red}{\int{\left(- 2 e^{u}\right)d u}}}}{22} = \frac{\sqrt{11} {\color{red}{\left(- 2 \int{e^{u} d u}\right)}}}{22}$$

A integral da função exponencial é $$$\int{e^{u} d u} = e^{u}$$$:

$$- \frac{\sqrt{11} {\color{red}{\int{e^{u} d u}}}}{11} = - \frac{\sqrt{11} {\color{red}{e^{u}}}}{11}$$

Recorde que $$$u=- \frac{x}{2}$$$:

$$- \frac{\sqrt{11} e^{{\color{red}{u}}}}{11} = - \frac{\sqrt{11} e^{{\color{red}{\left(- \frac{x}{2}\right)}}}}{11}$$

Portanto,

$$\int{\frac{\sqrt{11} e^{- \frac{x}{2}}}{22} d x} = - \frac{\sqrt{11} e^{- \frac{x}{2}}}{11}$$

Adicione a constante de integração:

$$\int{\frac{\sqrt{11} e^{- \frac{x}{2}}}{22} d x} = - \frac{\sqrt{11} e^{- \frac{x}{2}}}{11}+C$$

Resposta

$$$\int \frac{\sqrt{11} e^{- \frac{x}{2}}}{22}\, dx = - \frac{\sqrt{11} e^{- \frac{x}{2}}}{11} + C$$$A


Please try a new game Rotatly