Integral de $$$- \cos{\left(\frac{x}{y} \right)}$$$ em relação a $$$x$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(- \cos{\left(\frac{x}{y} \right)}\right)\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=-1$$$ e $$$f{\left(x \right)} = \cos{\left(\frac{x}{y} \right)}$$$:
$${\color{red}{\int{\left(- \cos{\left(\frac{x}{y} \right)}\right)d x}}} = {\color{red}{\left(- \int{\cos{\left(\frac{x}{y} \right)} d x}\right)}}$$
Seja $$$u=\frac{x}{y}$$$.
Então $$$du=\left(\frac{x}{y}\right)^{\prime }dx = \frac{dx}{y}$$$ (veja os passos »), e obtemos $$$dx = y du$$$.
Portanto,
$$- {\color{red}{\int{\cos{\left(\frac{x}{y} \right)} d x}}} = - {\color{red}{\int{y \cos{\left(u \right)} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=y$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$- {\color{red}{\int{y \cos{\left(u \right)} d u}}} = - {\color{red}{y \int{\cos{\left(u \right)} d u}}}$$
A integral do cosseno é $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- y {\color{red}{\int{\cos{\left(u \right)} d u}}} = - y {\color{red}{\sin{\left(u \right)}}}$$
Recorde que $$$u=\frac{x}{y}$$$:
$$- y \sin{\left({\color{red}{u}} \right)} = - y \sin{\left({\color{red}{\frac{x}{y}}} \right)}$$
Portanto,
$$\int{\left(- \cos{\left(\frac{x}{y} \right)}\right)d x} = - y \sin{\left(\frac{x}{y} \right)}$$
Adicione a constante de integração:
$$\int{\left(- \cos{\left(\frac{x}{y} \right)}\right)d x} = - y \sin{\left(\frac{x}{y} \right)}+C$$
Resposta
$$$\int \left(- \cos{\left(\frac{x}{y} \right)}\right)\, dx = - y \sin{\left(\frac{x}{y} \right)} + C$$$A