Integral de $$$- \frac{\cos{\left(3 x \right)}}{3}$$$

A calculadora encontrará a integral/antiderivada de $$$- \frac{\cos{\left(3 x \right)}}{3}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \left(- \frac{\cos{\left(3 x \right)}}{3}\right)\, dx$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=- \frac{1}{3}$$$ e $$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$:

$${\color{red}{\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x}}} = {\color{red}{\left(- \frac{\int{\cos{\left(3 x \right)} d x}}{3}\right)}}$$

Seja $$$u=3 x$$$.

Então $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{3}$$$.

A integral pode ser reescrita como

$$- \frac{{\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{3} = - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{3}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{3}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$- \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{3} = - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}}{3}$$

A integral do cosseno é $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$- \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{9} = - \frac{{\color{red}{\sin{\left(u \right)}}}}{9}$$

Recorde que $$$u=3 x$$$:

$$- \frac{\sin{\left({\color{red}{u}} \right)}}{9} = - \frac{\sin{\left({\color{red}{\left(3 x\right)}} \right)}}{9}$$

Portanto,

$$\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x} = - \frac{\sin{\left(3 x \right)}}{9}$$

Adicione a constante de integração:

$$\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x} = - \frac{\sin{\left(3 x \right)}}{9}+C$$

Resposta

$$$\int \left(- \frac{\cos{\left(3 x \right)}}{3}\right)\, dx = - \frac{\sin{\left(3 x \right)}}{9} + C$$$A


Please try a new game Rotatly