Integral de $$$- \frac{\cos{\left(3 x \right)}}{3}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(- \frac{\cos{\left(3 x \right)}}{3}\right)\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=- \frac{1}{3}$$$ e $$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$:
$${\color{red}{\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x}}} = {\color{red}{\left(- \frac{\int{\cos{\left(3 x \right)} d x}}{3}\right)}}$$
Seja $$$u=3 x$$$.
Então $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{3}$$$.
A integral pode ser reescrita como
$$- \frac{{\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{3} = - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{3}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{3}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$- \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{3} = - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}}{3}$$
A integral do cosseno é $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{9} = - \frac{{\color{red}{\sin{\left(u \right)}}}}{9}$$
Recorde que $$$u=3 x$$$:
$$- \frac{\sin{\left({\color{red}{u}} \right)}}{9} = - \frac{\sin{\left({\color{red}{\left(3 x\right)}} \right)}}{9}$$
Portanto,
$$\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x} = - \frac{\sin{\left(3 x \right)}}{9}$$
Adicione a constante de integração:
$$\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x} = - \frac{\sin{\left(3 x \right)}}{9}+C$$
Resposta
$$$\int \left(- \frac{\cos{\left(3 x \right)}}{3}\right)\, dx = - \frac{\sin{\left(3 x \right)}}{9} + C$$$A