Integral de $$$x^{2} e^{3 x}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int x^{2} e^{3 x}\, dx$$$.
Solução
Para a integral $$$\int{x^{2} e^{3 x} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sejam $$$\operatorname{u}=x^{2}$$$ e $$$\operatorname{dv}=e^{3 x} dx$$$.
Então $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{e^{3 x} d x}=\frac{e^{3 x}}{3}$$$ (os passos podem ser vistos »).
Logo,
$${\color{red}{\int{x^{2} e^{3 x} d x}}}={\color{red}{\left(x^{2} \cdot \frac{e^{3 x}}{3}-\int{\frac{e^{3 x}}{3} \cdot 2 x d x}\right)}}={\color{red}{\left(\frac{x^{2} e^{3 x}}{3} - \int{\frac{2 x e^{3 x}}{3} d x}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{2}{3}$$$ e $$$f{\left(x \right)} = x e^{3 x}$$$:
$$\frac{x^{2} e^{3 x}}{3} - {\color{red}{\int{\frac{2 x e^{3 x}}{3} d x}}} = \frac{x^{2} e^{3 x}}{3} - {\color{red}{\left(\frac{2 \int{x e^{3 x} d x}}{3}\right)}}$$
Para a integral $$$\int{x e^{3 x} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sejam $$$\operatorname{u}=x$$$ e $$$\operatorname{dv}=e^{3 x} dx$$$.
Então $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{e^{3 x} d x}=\frac{e^{3 x}}{3}$$$ (os passos podem ser vistos »).
Portanto,
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 {\color{red}{\int{x e^{3 x} d x}}}}{3}=\frac{x^{2} e^{3 x}}{3} - \frac{2 {\color{red}{\left(x \cdot \frac{e^{3 x}}{3}-\int{\frac{e^{3 x}}{3} \cdot 1 d x}\right)}}}{3}=\frac{x^{2} e^{3 x}}{3} - \frac{2 {\color{red}{\left(\frac{x e^{3 x}}{3} - \int{\frac{e^{3 x}}{3} d x}\right)}}}{3}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{3}$$$ e $$$f{\left(x \right)} = e^{3 x}$$$:
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\int{\frac{e^{3 x}}{3} d x}}}}{3} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\left(\frac{\int{e^{3 x} d x}}{3}\right)}}}{3}$$
Seja $$$u=3 x$$$.
Então $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{3}$$$.
Logo,
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\int{e^{3 x} d x}}}}{9} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\int{\frac{e^{u}}{3} d u}}}}{9}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{3}$$$ e $$$f{\left(u \right)} = e^{u}$$$:
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\int{\frac{e^{u}}{3} d u}}}}{9} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\left(\frac{\int{e^{u} d u}}{3}\right)}}}{9}$$
A integral da função exponencial é $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\int{e^{u} d u}}}}{27} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{e^{u}}}}{27}$$
Recorde que $$$u=3 x$$$:
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 e^{{\color{red}{u}}}}{27} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 e^{{\color{red}{\left(3 x\right)}}}}{27}$$
Portanto,
$$\int{x^{2} e^{3 x} d x} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 e^{3 x}}{27}$$
Simplifique:
$$\int{x^{2} e^{3 x} d x} = \frac{\left(9 x^{2} - 6 x + 2\right) e^{3 x}}{27}$$
Adicione a constante de integração:
$$\int{x^{2} e^{3 x} d x} = \frac{\left(9 x^{2} - 6 x + 2\right) e^{3 x}}{27}+C$$
Resposta
$$$\int x^{2} e^{3 x}\, dx = \frac{\left(9 x^{2} - 6 x + 2\right) e^{3 x}}{27} + C$$$A