Integral de $$$\sin{\left(t \right)} \sqrt{\cos{\left(t \right)}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \sin{\left(t \right)} \sqrt{\cos{\left(t \right)}}\, dt$$$.
Solução
Seja $$$u=\cos{\left(t \right)}$$$.
Então $$$du=\left(\cos{\left(t \right)}\right)^{\prime }dt = - \sin{\left(t \right)} dt$$$ (veja os passos »), e obtemos $$$\sin{\left(t \right)} dt = - du$$$.
Portanto,
$${\color{red}{\int{\sin{\left(t \right)} \sqrt{\cos{\left(t \right)}} d t}}} = {\color{red}{\int{\left(- \sqrt{u}\right)d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=-1$$$ e $$$f{\left(u \right)} = \sqrt{u}$$$:
$${\color{red}{\int{\left(- \sqrt{u}\right)d u}}} = {\color{red}{\left(- \int{\sqrt{u} d u}\right)}}$$
Aplique a regra da potência $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=\frac{1}{2}$$$:
$$- {\color{red}{\int{\sqrt{u} d u}}}=- {\color{red}{\int{u^{\frac{1}{2}} d u}}}=- {\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=- {\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$
Recorde que $$$u=\cos{\left(t \right)}$$$:
$$- \frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = - \frac{2 {\color{red}{\cos{\left(t \right)}}}^{\frac{3}{2}}}{3}$$
Portanto,
$$\int{\sin{\left(t \right)} \sqrt{\cos{\left(t \right)}} d t} = - \frac{2 \cos^{\frac{3}{2}}{\left(t \right)}}{3}$$
Adicione a constante de integração:
$$\int{\sin{\left(t \right)} \sqrt{\cos{\left(t \right)}} d t} = - \frac{2 \cos^{\frac{3}{2}}{\left(t \right)}}{3}+C$$
Resposta
$$$\int \sin{\left(t \right)} \sqrt{\cos{\left(t \right)}}\, dt = - \frac{2 \cos^{\frac{3}{2}}{\left(t \right)}}{3} + C$$$A