Integral de $$$\frac{\tan^{2}{\left(x \right)}}{2}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{\tan^{2}{\left(x \right)}}{2}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{\tan^{2}{\left(x \right)}}{2}\, dx$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \tan^{2}{\left(x \right)}$$$:

$${\color{red}{\int{\frac{\tan^{2}{\left(x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\tan^{2}{\left(x \right)} d x}}{2}\right)}}$$

Seja $$$u=\tan{\left(x \right)}$$$.

Então $$$x=\operatorname{atan}{\left(u \right)}$$$ e $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (as etapas podem ser vistas »).

Portanto,

$$\frac{{\color{red}{\int{\tan^{2}{\left(x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}}{2}$$

Reescreva e separe a fração:

$$\frac{{\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}}{2} = \frac{{\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}}{2}$$

Integre termo a termo:

$$\frac{{\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}}{2} = \frac{{\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}}{2}$$

Aplique a regra da constante $$$\int c\, du = c u$$$ usando $$$c=1$$$:

$$- \frac{\int{\frac{1}{u^{2} + 1} d u}}{2} + \frac{{\color{red}{\int{1 d u}}}}{2} = - \frac{\int{\frac{1}{u^{2} + 1} d u}}{2} + \frac{{\color{red}{u}}}{2}$$

A integral de $$$\frac{1}{u^{2} + 1}$$$ é $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$\frac{u}{2} - \frac{{\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{2} = \frac{u}{2} - \frac{{\color{red}{\operatorname{atan}{\left(u \right)}}}}{2}$$

Recorde que $$$u=\tan{\left(x \right)}$$$:

$$- \frac{\operatorname{atan}{\left({\color{red}{u}} \right)}}{2} + \frac{{\color{red}{u}}}{2} = - \frac{\operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)}}{2} + \frac{{\color{red}{\tan{\left(x \right)}}}}{2}$$

Portanto,

$$\int{\frac{\tan^{2}{\left(x \right)}}{2} d x} = \frac{\tan{\left(x \right)}}{2} - \frac{\operatorname{atan}{\left(\tan{\left(x \right)} \right)}}{2}$$

Simplifique:

$$\int{\frac{\tan^{2}{\left(x \right)}}{2} d x} = - \frac{x}{2} + \frac{\tan{\left(x \right)}}{2}$$

Adicione a constante de integração:

$$\int{\frac{\tan^{2}{\left(x \right)}}{2} d x} = - \frac{x}{2} + \frac{\tan{\left(x \right)}}{2}+C$$

Resposta

$$$\int \frac{\tan^{2}{\left(x \right)}}{2}\, dx = \left(- \frac{x}{2} + \frac{\tan{\left(x \right)}}{2}\right) + C$$$A


Please try a new game Rotatly