Integral de $$$\frac{1}{x^{2} - 78 x}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{1}{x^{2} - 78 x}\, dx$$$.
Solução
Efetue a decomposição em frações parciais (os passos podem ser vistos »):
$${\color{red}{\int{\frac{1}{x^{2} - 78 x} d x}}} = {\color{red}{\int{\left(\frac{1}{78 \left(x - 78\right)} - \frac{1}{78 x}\right)d x}}}$$
Integre termo a termo:
$${\color{red}{\int{\left(\frac{1}{78 \left(x - 78\right)} - \frac{1}{78 x}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{78 x} d x} + \int{\frac{1}{78 \left(x - 78\right)} d x}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{78}$$$ e $$$f{\left(x \right)} = \frac{1}{x}$$$:
$$\int{\frac{1}{78 \left(x - 78\right)} d x} - {\color{red}{\int{\frac{1}{78 x} d x}}} = \int{\frac{1}{78 \left(x - 78\right)} d x} - {\color{red}{\left(\frac{\int{\frac{1}{x} d x}}{78}\right)}}$$
A integral de $$$\frac{1}{x}$$$ é $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$\int{\frac{1}{78 \left(x - 78\right)} d x} - \frac{{\color{red}{\int{\frac{1}{x} d x}}}}{78} = \int{\frac{1}{78 \left(x - 78\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{78}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{78}$$$ e $$$f{\left(x \right)} = \frac{1}{x - 78}$$$:
$$- \frac{\ln{\left(\left|{x}\right| \right)}}{78} + {\color{red}{\int{\frac{1}{78 \left(x - 78\right)} d x}}} = - \frac{\ln{\left(\left|{x}\right| \right)}}{78} + {\color{red}{\left(\frac{\int{\frac{1}{x - 78} d x}}{78}\right)}}$$
Seja $$$u=x - 78$$$.
Então $$$du=\left(x - 78\right)^{\prime }dx = 1 dx$$$ (veja os passos »), e obtemos $$$dx = du$$$.
Assim,
$$- \frac{\ln{\left(\left|{x}\right| \right)}}{78} + \frac{{\color{red}{\int{\frac{1}{x - 78} d x}}}}{78} = - \frac{\ln{\left(\left|{x}\right| \right)}}{78} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{78}$$
A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{\ln{\left(\left|{x}\right| \right)}}{78} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{78} = - \frac{\ln{\left(\left|{x}\right| \right)}}{78} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{78}$$
Recorde que $$$u=x - 78$$$:
$$- \frac{\ln{\left(\left|{x}\right| \right)}}{78} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{78} = - \frac{\ln{\left(\left|{x}\right| \right)}}{78} + \frac{\ln{\left(\left|{{\color{red}{\left(x - 78\right)}}}\right| \right)}}{78}$$
Portanto,
$$\int{\frac{1}{x^{2} - 78 x} d x} = - \frac{\ln{\left(\left|{x}\right| \right)}}{78} + \frac{\ln{\left(\left|{x - 78}\right| \right)}}{78}$$
Simplifique:
$$\int{\frac{1}{x^{2} - 78 x} d x} = \frac{- \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 78}\right| \right)}}{78}$$
Adicione a constante de integração:
$$\int{\frac{1}{x^{2} - 78 x} d x} = \frac{- \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 78}\right| \right)}}{78}+C$$
Resposta
$$$\int \frac{1}{x^{2} - 78 x}\, dx = \frac{- \ln\left(\left|{x}\right|\right) + \ln\left(\left|{x - 78}\right|\right)}{78} + C$$$A