Integral de $$$\frac{1}{x \ln^{3}\left(x\right)}$$$ em relação a $$$t$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dt$$$.
Solução
Aplique a regra da constante $$$\int c\, dt = c t$$$ usando $$$c=\frac{1}{x \ln{\left(x \right)}^{3}}$$$:
$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t}}} = {\color{red}{\frac{t}{x \ln{\left(x \right)}^{3}}}}$$
Portanto,
$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t} = \frac{t}{x \ln{\left(x \right)}^{3}}$$
Adicione a constante de integração:
$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t} = \frac{t}{x \ln{\left(x \right)}^{3}}+C$$
Resposta
$$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dt = \frac{t}{x \ln^{3}\left(x\right)} + C$$$A