Integral de $$$\frac{_0 x}{10}$$$ em relação a $$$x$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{_0 x}{10}\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{_0}{10}$$$ e $$$f{\left(x \right)} = x$$$:
$${\color{red}{\int{\frac{_0 x}{10} d x}}} = {\color{red}{\left(\frac{_0 \int{x d x}}{10}\right)}}$$
Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:
$$\frac{_0 {\color{red}{\int{x d x}}}}{10}=\frac{_0 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{10}=\frac{_0 {\color{red}{\left(\frac{x^{2}}{2}\right)}}}{10}$$
Portanto,
$$\int{\frac{_0 x}{10} d x} = \frac{_0 x^{2}}{20}$$
Adicione a constante de integração:
$$\int{\frac{_0 x}{10} d x} = \frac{_0 x^{2}}{20}+C$$
Resposta
$$$\int \frac{_0 x}{10}\, dx = \frac{_0 x^{2}}{20} + C$$$A