Integral de $$$\frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}}\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=8$$$ e $$$f{\left(x \right)} = \frac{e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}}$$$:
$${\color{red}{\int{\frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x}}} = {\color{red}{\left(8 \int{\frac{e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x}\right)}}$$
Seja $$$u=\operatorname{acos}{\left(x \right)}$$$.
Então $$$du=\left(\operatorname{acos}{\left(x \right)}\right)^{\prime }dx = - \frac{1}{\sqrt{1 - x^{2}}} dx$$$ (veja os passos »), e obtemos $$$\frac{dx}{\sqrt{1 - x^{2}}} = - du$$$.
A integral pode ser reescrita como
$$8 {\color{red}{\int{\frac{e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x}}} = 8 {\color{red}{\int{\left(- e^{u}\right)d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=-1$$$ e $$$f{\left(u \right)} = e^{u}$$$:
$$8 {\color{red}{\int{\left(- e^{u}\right)d u}}} = 8 {\color{red}{\left(- \int{e^{u} d u}\right)}}$$
A integral da função exponencial é $$$\int{e^{u} d u} = e^{u}$$$:
$$- 8 {\color{red}{\int{e^{u} d u}}} = - 8 {\color{red}{e^{u}}}$$
Recorde que $$$u=\operatorname{acos}{\left(x \right)}$$$:
$$- 8 e^{{\color{red}{u}}} = - 8 e^{{\color{red}{\operatorname{acos}{\left(x \right)}}}}$$
Portanto,
$$\int{\frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x} = - 8 e^{\operatorname{acos}{\left(x \right)}}$$
Adicione a constante de integração:
$$\int{\frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x} = - 8 e^{\operatorname{acos}{\left(x \right)}}+C$$
Resposta
$$$\int \frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}}\, dx = - 8 e^{\operatorname{acos}{\left(x \right)}} + C$$$A