Integral de $$$- \frac{1}{2 x^{\frac{3}{2}}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(- \frac{1}{2 x^{\frac{3}{2}}}\right)\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=- \frac{1}{2}$$$ e $$$f{\left(x \right)} = \frac{1}{x^{\frac{3}{2}}}$$$:
$${\color{red}{\int{\left(- \frac{1}{2 x^{\frac{3}{2}}}\right)d x}}} = {\color{red}{\left(- \frac{\int{\frac{1}{x^{\frac{3}{2}}} d x}}{2}\right)}}$$
Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=- \frac{3}{2}$$$:
$$- \frac{{\color{red}{\int{\frac{1}{x^{\frac{3}{2}}} d x}}}}{2}=- \frac{{\color{red}{\int{x^{- \frac{3}{2}} d x}}}}{2}=- \frac{{\color{red}{\frac{x^{- \frac{3}{2} + 1}}{- \frac{3}{2} + 1}}}}{2}=- \frac{{\color{red}{\left(- 2 x^{- \frac{1}{2}}\right)}}}{2}=- \frac{{\color{red}{\left(- \frac{2}{\sqrt{x}}\right)}}}{2}$$
Portanto,
$$\int{\left(- \frac{1}{2 x^{\frac{3}{2}}}\right)d x} = \frac{1}{\sqrt{x}}$$
Adicione a constante de integração:
$$\int{\left(- \frac{1}{2 x^{\frac{3}{2}}}\right)d x} = \frac{1}{\sqrt{x}}+C$$
Resposta
$$$\int \left(- \frac{1}{2 x^{\frac{3}{2}}}\right)\, dx = \frac{1}{\sqrt{x}} + C$$$A