Integral de $$$\frac{t}{2}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{t}{2}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{t}{2}\, dt$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(t \right)} = t$$$:

$${\color{red}{\int{\frac{t}{2} d t}}} = {\color{red}{\left(\frac{\int{t d t}}{2}\right)}}$$

Aplique a regra da potência $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:

$$\frac{{\color{red}{\int{t d t}}}}{2}=\frac{{\color{red}{\frac{t^{1 + 1}}{1 + 1}}}}{2}=\frac{{\color{red}{\left(\frac{t^{2}}{2}\right)}}}{2}$$

Portanto,

$$\int{\frac{t}{2} d t} = \frac{t^{2}}{4}$$

Adicione a constante de integração:

$$\int{\frac{t}{2} d t} = \frac{t^{2}}{4}+C$$

Resposta

$$$\int \frac{t}{2}\, dt = \frac{t^{2}}{4} + C$$$A


Please try a new game Rotatly