Integral de $$$\frac{3 e^{\frac{1}{x^{3}}}}{x^{4}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{3 e^{\frac{1}{x^{3}}}}{x^{4}}\, dx$$$.
Solução
Seja $$$u=x^{3}$$$.
Então $$$du=\left(x^{3}\right)^{\prime }dx = 3 x^{2} dx$$$ (veja os passos »), e obtemos $$$x^{2} dx = \frac{du}{3}$$$.
Assim,
$${\color{red}{\int{\frac{3 e^{\frac{1}{x^{3}}}}{x^{4}} d x}}} = {\color{red}{\int{\frac{e^{\frac{1}{u}}}{u^{2}} d u}}}$$
Seja $$$v=\frac{1}{u}$$$.
Então $$$dv=\left(\frac{1}{u}\right)^{\prime }du = - \frac{1}{u^{2}} du$$$ (veja os passos »), e obtemos $$$\frac{du}{u^{2}} = - dv$$$.
Portanto,
$${\color{red}{\int{\frac{e^{\frac{1}{u}}}{u^{2}} d u}}} = {\color{red}{\int{\left(- e^{v}\right)d v}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ usando $$$c=-1$$$ e $$$f{\left(v \right)} = e^{v}$$$:
$${\color{red}{\int{\left(- e^{v}\right)d v}}} = {\color{red}{\left(- \int{e^{v} d v}\right)}}$$
A integral da função exponencial é $$$\int{e^{v} d v} = e^{v}$$$:
$$- {\color{red}{\int{e^{v} d v}}} = - {\color{red}{e^{v}}}$$
Recorde que $$$v=\frac{1}{u}$$$:
$$- e^{{\color{red}{v}}} = - e^{{\color{red}{\frac{1}{u}}}}$$
Recorde que $$$u=x^{3}$$$:
$$- e^{{\color{red}{u}}^{-1}} = - e^{{\color{red}{x^{3}}}^{-1}}$$
Portanto,
$$\int{\frac{3 e^{\frac{1}{x^{3}}}}{x^{4}} d x} = - e^{\frac{1}{x^{3}}}$$
Adicione a constante de integração:
$$\int{\frac{3 e^{\frac{1}{x^{3}}}}{x^{4}} d x} = - e^{\frac{1}{x^{3}}}+C$$
Resposta
$$$\int \frac{3 e^{\frac{1}{x^{3}}}}{x^{4}}\, dx = - e^{\frac{1}{x^{3}}} + C$$$A