Integral de $$$\left(2 x - 6\right)^{3}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(2 x - 6\right)^{3}\, dx$$$.
Solução
Seja $$$u=2 x - 6$$$.
Então $$$du=\left(2 x - 6\right)^{\prime }dx = 2 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{2}$$$.
Assim,
$${\color{red}{\int{\left(2 x - 6\right)^{3} d x}}} = {\color{red}{\int{\frac{u^{3}}{2} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = u^{3}$$$:
$${\color{red}{\int{\frac{u^{3}}{2} d u}}} = {\color{red}{\left(\frac{\int{u^{3} d u}}{2}\right)}}$$
Aplique a regra da potência $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=3$$$:
$$\frac{{\color{red}{\int{u^{3} d u}}}}{2}=\frac{{\color{red}{\frac{u^{1 + 3}}{1 + 3}}}}{2}=\frac{{\color{red}{\left(\frac{u^{4}}{4}\right)}}}{2}$$
Recorde que $$$u=2 x - 6$$$:
$$\frac{{\color{red}{u}}^{4}}{8} = \frac{{\color{red}{\left(2 x - 6\right)}}^{4}}{8}$$
Portanto,
$$\int{\left(2 x - 6\right)^{3} d x} = \frac{\left(2 x - 6\right)^{4}}{8}$$
Simplifique:
$$\int{\left(2 x - 6\right)^{3} d x} = 2 \left(x - 3\right)^{4}$$
Adicione a constante de integração:
$$\int{\left(2 x - 6\right)^{3} d x} = 2 \left(x - 3\right)^{4}+C$$
Resposta
$$$\int \left(2 x - 6\right)^{3}\, dx = 2 \left(x - 3\right)^{4} + C$$$A