Integral de $$$\frac{2 x^{3}}{x^{2} - 9}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{2 x^{3}}{x^{2} - 9}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{2 x^{3}}{x^{2} - 9}\, dx$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2$$$ e $$$f{\left(x \right)} = \frac{x^{3}}{x^{2} - 9}$$$:

$${\color{red}{\int{\frac{2 x^{3}}{x^{2} - 9} d x}}} = {\color{red}{\left(2 \int{\frac{x^{3}}{x^{2} - 9} d x}\right)}}$$

Como o grau do numerador não é menor que o grau do denominador, realize a divisão longa de polinômios (os passos podem ser vistos »):

$$2 {\color{red}{\int{\frac{x^{3}}{x^{2} - 9} d x}}} = 2 {\color{red}{\int{\left(x + \frac{9 x}{x^{2} - 9}\right)d x}}}$$

Integre termo a termo:

$$2 {\color{red}{\int{\left(x + \frac{9 x}{x^{2} - 9}\right)d x}}} = 2 {\color{red}{\left(\int{x d x} + \int{\frac{9 x}{x^{2} - 9} d x}\right)}}$$

Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:

$$2 \int{\frac{9 x}{x^{2} - 9} d x} + 2 {\color{red}{\int{x d x}}}=2 \int{\frac{9 x}{x^{2} - 9} d x} + 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=2 \int{\frac{9 x}{x^{2} - 9} d x} + 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Seja $$$u=x^{2} - 9$$$.

Então $$$du=\left(x^{2} - 9\right)^{\prime }dx = 2 x dx$$$ (veja os passos »), e obtemos $$$x dx = \frac{du}{2}$$$.

Assim,

$$x^{2} + 2 {\color{red}{\int{\frac{9 x}{x^{2} - 9} d x}}} = x^{2} + 2 {\color{red}{\int{\frac{9}{2 u} d u}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{9}{2}$$$ e $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$x^{2} + 2 {\color{red}{\int{\frac{9}{2 u} d u}}} = x^{2} + 2 {\color{red}{\left(\frac{9 \int{\frac{1}{u} d u}}{2}\right)}}$$

A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$x^{2} + 9 {\color{red}{\int{\frac{1}{u} d u}}} = x^{2} + 9 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Recorde que $$$u=x^{2} - 9$$$:

$$x^{2} + 9 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x^{2} + 9 \ln{\left(\left|{{\color{red}{\left(x^{2} - 9\right)}}}\right| \right)}$$

Portanto,

$$\int{\frac{2 x^{3}}{x^{2} - 9} d x} = x^{2} + 9 \ln{\left(\left|{x^{2} - 9}\right| \right)}$$

Adicione a constante de integração:

$$\int{\frac{2 x^{3}}{x^{2} - 9} d x} = x^{2} + 9 \ln{\left(\left|{x^{2} - 9}\right| \right)}+C$$

Resposta

$$$\int \frac{2 x^{3}}{x^{2} - 9}\, dx = \left(x^{2} + 9 \ln\left(\left|{x^{2} - 9}\right|\right)\right) + C$$$A


Please try a new game Rotatly