Integral de $$$\left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)}\, dx$$$.
Solução
Aplique a fórmula de redução de potência $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ com $$$\alpha=x$$$:
$${\color{red}{\int{\left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\left(2 - 3 \sin{\left(x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right)}{2} d x}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \left(2 - 3 \sin{\left(x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right)$$$:
$${\color{red}{\int{\frac{\left(2 - 3 \sin{\left(x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{\left(2 - 3 \sin{\left(x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) d x}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{\left(2 - 3 \sin{\left(x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) d x}}}}{2} = \frac{{\color{red}{\int{\left(- 3 \sin{\left(x \right)} \cos{\left(2 x \right)} - 3 \sin{\left(x \right)} + 2 \cos{\left(2 x \right)} + 2\right)d x}}}}{2}$$
Integre termo a termo:
$$\frac{{\color{red}{\int{\left(- 3 \sin{\left(x \right)} \cos{\left(2 x \right)} - 3 \sin{\left(x \right)} + 2 \cos{\left(2 x \right)} + 2\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{2 d x} - \int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x} - \int{3 \sin{\left(x \right)} d x} + \int{2 \cos{\left(2 x \right)} d x}\right)}}}{2}$$
Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=2$$$:
$$- \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{\int{3 \sin{\left(x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{2 d x}}}}{2} = - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{\int{3 \sin{\left(x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\left(2 x\right)}}}{2}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=3$$$ e $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$$x - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{3 \sin{\left(x \right)} d x}}}}{2} = x - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\left(3 \int{\sin{\left(x \right)} d x}\right)}}}{2}$$
A integral do seno é $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$x - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} - \frac{3 {\color{red}{\int{\sin{\left(x \right)} d x}}}}{2} = x - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} - \frac{3 {\color{red}{\left(- \cos{\left(x \right)}\right)}}}{2}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2$$$ e $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$:
$$x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{2 \cos{\left(2 x \right)} d x}}}}{2} = x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\left(2 \int{\cos{\left(2 x \right)} d x}\right)}}}{2}$$
Seja $$$u=2 x$$$.
Então $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{2}$$$.
Assim,
$$x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$
A integral do cosseno é $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{2}$$
Recorde que $$$u=2 x$$$:
$$x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{2} = x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$
Reescreva $$$\sin\left(x \right)\cos\left(2 x \right)$$$ utilizando a fórmula $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ com $$$\alpha=x$$$ e $$$\beta=2 x$$$:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}}}{2} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\int{\left(- \frac{3 \sin{\left(x \right)}}{2} + \frac{3 \sin{\left(3 x \right)}}{2}\right)d x}}}}{2}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = - 3 \sin{\left(x \right)} + 3 \sin{\left(3 x \right)}$$$:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\int{\left(- \frac{3 \sin{\left(x \right)}}{2} + \frac{3 \sin{\left(3 x \right)}}{2}\right)d x}}}}{2} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\left(\frac{\int{\left(- 3 \sin{\left(x \right)} + 3 \sin{\left(3 x \right)}\right)d x}}{2}\right)}}}{2}$$
Integre termo a termo:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\int{\left(- 3 \sin{\left(x \right)} + 3 \sin{\left(3 x \right)}\right)d x}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\left(- \int{3 \sin{\left(x \right)} d x} + \int{3 \sin{\left(3 x \right)} d x}\right)}}}{4}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=3$$$ e $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(3 x \right)} d x}}{4} + \frac{{\color{red}{\int{3 \sin{\left(x \right)} d x}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(3 x \right)} d x}}{4} + \frac{{\color{red}{\left(3 \int{\sin{\left(x \right)} d x}\right)}}}{4}$$
A integral do seno é $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(3 x \right)} d x}}{4} + \frac{3 {\color{red}{\int{\sin{\left(x \right)} d x}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(3 x \right)} d x}}{4} + \frac{3 {\color{red}{\left(- \cos{\left(x \right)}\right)}}}{4}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=3$$$ e $$$f{\left(x \right)} = \sin{\left(3 x \right)}$$$:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{{\color{red}{\int{3 \sin{\left(3 x \right)} d x}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{{\color{red}{\left(3 \int{\sin{\left(3 x \right)} d x}\right)}}}{4}$$
Seja $$$u=3 x$$$.
Então $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{3}$$$.
Assim,
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{3 {\color{red}{\int{\sin{\left(3 x \right)} d x}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{3 {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{4}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{3}$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{3 {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{3 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}}{4}$$
A integral do seno é $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$
Recorde que $$$u=3 x$$$:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} + \frac{\cos{\left({\color{red}{u}} \right)}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} + \frac{\cos{\left({\color{red}{\left(3 x\right)}} \right)}}{4}$$
Portanto,
$$\int{\left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)} d x} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} + \frac{\cos{\left(3 x \right)}}{4}$$
Adicione a constante de integração:
$$\int{\left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)} d x} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} + \frac{\cos{\left(3 x \right)}}{4}+C$$
Resposta
$$$\int \left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)}\, dx = \left(x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} + \frac{\cos{\left(3 x \right)}}{4}\right) + C$$$A