Integral de $$$2 \tan^{2}{\left(\theta \right)}$$$

A calculadora encontrará a integral/antiderivada de $$$2 \tan^{2}{\left(\theta \right)}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int 2 \tan^{2}{\left(\theta \right)}\, d\theta$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ usando $$$c=2$$$ e $$$f{\left(\theta \right)} = \tan^{2}{\left(\theta \right)}$$$:

$${\color{red}{\int{2 \tan^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\left(2 \int{\tan^{2}{\left(\theta \right)} d \theta}\right)}}$$

Seja $$$u=\tan{\left(\theta \right)}$$$.

Então $$$\theta=\operatorname{atan}{\left(u \right)}$$$ e $$$d\theta=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (as etapas podem ser vistas »).

A integral pode ser reescrita como

$$2 {\color{red}{\int{\tan^{2}{\left(\theta \right)} d \theta}}} = 2 {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}$$

Reescreva e separe a fração:

$$2 {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = 2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

Integre termo a termo:

$$2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = 2 {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

Aplique a regra da constante $$$\int c\, du = c u$$$ usando $$$c=1$$$:

$$- 2 \int{\frac{1}{u^{2} + 1} d u} + 2 {\color{red}{\int{1 d u}}} = - 2 \int{\frac{1}{u^{2} + 1} d u} + 2 {\color{red}{u}}$$

A integral de $$$\frac{1}{u^{2} + 1}$$$ é $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$2 u - 2 {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = 2 u - 2 {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

Recorde que $$$u=\tan{\left(\theta \right)}$$$:

$$- 2 \operatorname{atan}{\left({\color{red}{u}} \right)} + 2 {\color{red}{u}} = - 2 \operatorname{atan}{\left({\color{red}{\tan{\left(\theta \right)}}} \right)} + 2 {\color{red}{\tan{\left(\theta \right)}}}$$

Portanto,

$$\int{2 \tan^{2}{\left(\theta \right)} d \theta} = 2 \tan{\left(\theta \right)} - 2 \operatorname{atan}{\left(\tan{\left(\theta \right)} \right)}$$

Simplifique:

$$\int{2 \tan^{2}{\left(\theta \right)} d \theta} = 2 \left(- \theta + \tan{\left(\theta \right)}\right)$$

Adicione a constante de integração:

$$\int{2 \tan^{2}{\left(\theta \right)} d \theta} = 2 \left(- \theta + \tan{\left(\theta \right)}\right)+C$$

Resposta

$$$\int 2 \tan^{2}{\left(\theta \right)}\, d\theta = 2 \left(- \theta + \tan{\left(\theta \right)}\right) + C$$$A


Please try a new game Rotatly