Integral de $$$- 2 x + 3 \cos{\left(x \right)} + \frac{1}{x}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(- 2 x + 3 \cos{\left(x \right)} + \frac{1}{x}\right)\, dx$$$.
Solução
Integre termo a termo:
$${\color{red}{\int{\left(- 2 x + 3 \cos{\left(x \right)} + \frac{1}{x}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{x} d x} - \int{2 x d x} + \int{3 \cos{\left(x \right)} d x}\right)}}$$
A integral de $$$\frac{1}{x}$$$ é $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$- \int{2 x d x} + \int{3 \cos{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{x} d x}}} = - \int{2 x d x} + \int{3 \cos{\left(x \right)} d x} + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2$$$ e $$$f{\left(x \right)} = x$$$:
$$\ln{\left(\left|{x}\right| \right)} + \int{3 \cos{\left(x \right)} d x} - {\color{red}{\int{2 x d x}}} = \ln{\left(\left|{x}\right| \right)} + \int{3 \cos{\left(x \right)} d x} - {\color{red}{\left(2 \int{x d x}\right)}}$$
Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:
$$\ln{\left(\left|{x}\right| \right)} + \int{3 \cos{\left(x \right)} d x} - 2 {\color{red}{\int{x d x}}}=\ln{\left(\left|{x}\right| \right)} + \int{3 \cos{\left(x \right)} d x} - 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\ln{\left(\left|{x}\right| \right)} + \int{3 \cos{\left(x \right)} d x} - 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=3$$$ e $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$$- x^{2} + \ln{\left(\left|{x}\right| \right)} + {\color{red}{\int{3 \cos{\left(x \right)} d x}}} = - x^{2} + \ln{\left(\left|{x}\right| \right)} + {\color{red}{\left(3 \int{\cos{\left(x \right)} d x}\right)}}$$
A integral do cosseno é $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$- x^{2} + \ln{\left(\left|{x}\right| \right)} + 3 {\color{red}{\int{\cos{\left(x \right)} d x}}} = - x^{2} + \ln{\left(\left|{x}\right| \right)} + 3 {\color{red}{\sin{\left(x \right)}}}$$
Portanto,
$$\int{\left(- 2 x + 3 \cos{\left(x \right)} + \frac{1}{x}\right)d x} = - x^{2} + \ln{\left(\left|{x}\right| \right)} + 3 \sin{\left(x \right)}$$
Adicione a constante de integração:
$$\int{\left(- 2 x + 3 \cos{\left(x \right)} + \frac{1}{x}\right)d x} = - x^{2} + \ln{\left(\left|{x}\right| \right)} + 3 \sin{\left(x \right)}+C$$
Resposta
$$$\int \left(- 2 x + 3 \cos{\left(x \right)} + \frac{1}{x}\right)\, dx = \left(- x^{2} + \ln\left(\left|{x}\right|\right) + 3 \sin{\left(x \right)}\right) + C$$$A