Integral de $$$\left(\frac{x}{8} - 2\right)^{3}$$$

A calculadora encontrará a integral/antiderivada de $$$\left(\frac{x}{8} - 2\right)^{3}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \left(\frac{x}{8} - 2\right)^{3}\, dx$$$.

Solução

Seja $$$u=\frac{x}{8} - 2$$$.

Então $$$du=\left(\frac{x}{8} - 2\right)^{\prime }dx = \frac{dx}{8}$$$ (veja os passos »), e obtemos $$$dx = 8 du$$$.

Logo,

$${\color{red}{\int{\left(\frac{x}{8} - 2\right)^{3} d x}}} = {\color{red}{\int{8 u^{3} d u}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=8$$$ e $$$f{\left(u \right)} = u^{3}$$$:

$${\color{red}{\int{8 u^{3} d u}}} = {\color{red}{\left(8 \int{u^{3} d u}\right)}}$$

Aplique a regra da potência $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=3$$$:

$$8 {\color{red}{\int{u^{3} d u}}}=8 {\color{red}{\frac{u^{1 + 3}}{1 + 3}}}=8 {\color{red}{\left(\frac{u^{4}}{4}\right)}}$$

Recorde que $$$u=\frac{x}{8} - 2$$$:

$$2 {\color{red}{u}}^{4} = 2 {\color{red}{\left(\frac{x}{8} - 2\right)}}^{4}$$

Portanto,

$$\int{\left(\frac{x}{8} - 2\right)^{3} d x} = 2 \left(\frac{x}{8} - 2\right)^{4}$$

Simplifique:

$$\int{\left(\frac{x}{8} - 2\right)^{3} d x} = \frac{\left(x - 16\right)^{4}}{2048}$$

Adicione a constante de integração:

$$\int{\left(\frac{x}{8} - 2\right)^{3} d x} = \frac{\left(x - 16\right)^{4}}{2048}+C$$

Resposta

$$$\int \left(\frac{x}{8} - 2\right)^{3}\, dx = \frac{\left(x - 16\right)^{4}}{2048} + C$$$A


Please try a new game Rotatly