Integral de $$$- 3 x^{21} \left(x - 4\right)$$$

A calculadora encontrará a integral/antiderivada de $$$- 3 x^{21} \left(x - 4\right)$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \left(- 3 x^{21} \left(x - 4\right)\right)\, dx$$$.

Solução

A entrada é reescrita como: $$$\int{\left(- 3 x^{21} \left(x - 4\right)\right)d x}=\int{x^{21} \left(12 - 3 x\right) d x}$$$.

Simplifique o integrando:

$${\color{red}{\int{x^{21} \left(12 - 3 x\right) d x}}} = {\color{red}{\int{3 x^{21} \left(4 - x\right) d x}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=3$$$ e $$$f{\left(x \right)} = x^{21} \left(4 - x\right)$$$:

$${\color{red}{\int{3 x^{21} \left(4 - x\right) d x}}} = {\color{red}{\left(3 \int{x^{21} \left(4 - x\right) d x}\right)}}$$

Expand the expression:

$$3 {\color{red}{\int{x^{21} \left(4 - x\right) d x}}} = 3 {\color{red}{\int{\left(- x^{22} + 4 x^{21}\right)d x}}}$$

Integre termo a termo:

$$3 {\color{red}{\int{\left(- x^{22} + 4 x^{21}\right)d x}}} = 3 {\color{red}{\left(\int{4 x^{21} d x} - \int{x^{22} d x}\right)}}$$

Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=22$$$:

$$3 \int{4 x^{21} d x} - 3 {\color{red}{\int{x^{22} d x}}}=3 \int{4 x^{21} d x} - 3 {\color{red}{\frac{x^{1 + 22}}{1 + 22}}}=3 \int{4 x^{21} d x} - 3 {\color{red}{\left(\frac{x^{23}}{23}\right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=4$$$ e $$$f{\left(x \right)} = x^{21}$$$:

$$- \frac{3 x^{23}}{23} + 3 {\color{red}{\int{4 x^{21} d x}}} = - \frac{3 x^{23}}{23} + 3 {\color{red}{\left(4 \int{x^{21} d x}\right)}}$$

Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=21$$$:

$$- \frac{3 x^{23}}{23} + 12 {\color{red}{\int{x^{21} d x}}}=- \frac{3 x^{23}}{23} + 12 {\color{red}{\frac{x^{1 + 21}}{1 + 21}}}=- \frac{3 x^{23}}{23} + 12 {\color{red}{\left(\frac{x^{22}}{22}\right)}}$$

Portanto,

$$\int{x^{21} \left(12 - 3 x\right) d x} = - \frac{3 x^{23}}{23} + \frac{6 x^{22}}{11}$$

Simplifique:

$$\int{x^{21} \left(12 - 3 x\right) d x} = \frac{3 x^{22} \left(46 - 11 x\right)}{253}$$

Adicione a constante de integração:

$$\int{x^{21} \left(12 - 3 x\right) d x} = \frac{3 x^{22} \left(46 - 11 x\right)}{253}+C$$

Resposta

$$$\int \left(- 3 x^{21} \left(x - 4\right)\right)\, dx = \frac{3 x^{22} \left(46 - 11 x\right)}{253} + C$$$A


Please try a new game Rotatly