Integral de $$$\sqrt{x} \left(x - 1\right)$$$

A calculadora encontrará a integral/antiderivada de $$$\sqrt{x} \left(x - 1\right)$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \sqrt{x} \left(x - 1\right)\, dx$$$.

Solução

Expand the expression:

$${\color{red}{\int{\sqrt{x} \left(x - 1\right) d x}}} = {\color{red}{\int{\left(x^{\frac{3}{2}} - \sqrt{x}\right)d x}}}$$

Integre termo a termo:

$${\color{red}{\int{\left(x^{\frac{3}{2}} - \sqrt{x}\right)d x}}} = {\color{red}{\left(- \int{\sqrt{x} d x} + \int{x^{\frac{3}{2}} d x}\right)}}$$

Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=\frac{3}{2}$$$:

$$- \int{\sqrt{x} d x} + {\color{red}{\int{x^{\frac{3}{2}} d x}}}=- \int{\sqrt{x} d x} + {\color{red}{\frac{x^{1 + \frac{3}{2}}}{1 + \frac{3}{2}}}}=- \int{\sqrt{x} d x} + {\color{red}{\left(\frac{2 x^{\frac{5}{2}}}{5}\right)}}$$

Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=\frac{1}{2}$$$:

$$\frac{2 x^{\frac{5}{2}}}{5} - {\color{red}{\int{\sqrt{x} d x}}}=\frac{2 x^{\frac{5}{2}}}{5} - {\color{red}{\int{x^{\frac{1}{2}} d x}}}=\frac{2 x^{\frac{5}{2}}}{5} - {\color{red}{\frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=\frac{2 x^{\frac{5}{2}}}{5} - {\color{red}{\left(\frac{2 x^{\frac{3}{2}}}{3}\right)}}$$

Portanto,

$$\int{\sqrt{x} \left(x - 1\right) d x} = \frac{2 x^{\frac{5}{2}}}{5} - \frac{2 x^{\frac{3}{2}}}{3}$$

Simplifique:

$$\int{\sqrt{x} \left(x - 1\right) d x} = \frac{2 x^{\frac{3}{2}} \left(3 x - 5\right)}{15}$$

Adicione a constante de integração:

$$\int{\sqrt{x} \left(x - 1\right) d x} = \frac{2 x^{\frac{3}{2}} \left(3 x - 5\right)}{15}+C$$

Resposta

$$$\int \sqrt{x} \left(x - 1\right)\, dx = \frac{2 x^{\frac{3}{2}} \left(3 x - 5\right)}{15} + C$$$A


Please try a new game Rotatly