Integral de $$$\frac{e^{2 x}}{e^{x} + 1}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{e^{2 x}}{e^{x} + 1}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{e^{2 x}}{e^{x} + 1}\, dx$$$.

Solução

Seja $$$u=e^{x}$$$.

Então $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (veja os passos »), e obtemos $$$e^{x} dx = du$$$.

Assim,

$${\color{red}{\int{\frac{e^{2 x}}{e^{x} + 1} d x}}} = {\color{red}{\int{\frac{u}{u + 1} d u}}}$$

Reescreva e separe a fração:

$${\color{red}{\int{\frac{u}{u + 1} d u}}} = {\color{red}{\int{\left(1 - \frac{1}{u + 1}\right)d u}}}$$

Integre termo a termo:

$${\color{red}{\int{\left(1 - \frac{1}{u + 1}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u + 1} d u}\right)}}$$

Aplique a regra da constante $$$\int c\, du = c u$$$ usando $$$c=1$$$:

$$- \int{\frac{1}{u + 1} d u} + {\color{red}{\int{1 d u}}} = - \int{\frac{1}{u + 1} d u} + {\color{red}{u}}$$

Seja $$$v=u + 1$$$.

Então $$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (veja os passos »), e obtemos $$$du = dv$$$.

A integral torna-se

$$u - {\color{red}{\int{\frac{1}{u + 1} d u}}} = u - {\color{red}{\int{\frac{1}{v} d v}}}$$

A integral de $$$\frac{1}{v}$$$ é $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$u - {\color{red}{\int{\frac{1}{v} d v}}} = u - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$

Recorde que $$$v=u + 1$$$:

$$u - \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = u - \ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)}$$

Recorde que $$$u=e^{x}$$$:

$$- \ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)} + {\color{red}{u}} = - \ln{\left(\left|{1 + {\color{red}{e^{x}}}}\right| \right)} + {\color{red}{e^{x}}}$$

Portanto,

$$\int{\frac{e^{2 x}}{e^{x} + 1} d x} = e^{x} - \ln{\left(e^{x} + 1 \right)}$$

Adicione a constante de integração:

$$\int{\frac{e^{2 x}}{e^{x} + 1} d x} = e^{x} - \ln{\left(e^{x} + 1 \right)}+C$$

Resposta

$$$\int \frac{e^{2 x}}{e^{x} + 1}\, dx = \left(e^{x} - \ln\left(e^{x} + 1\right)\right) + C$$$A


Please try a new game Rotatly