Calculadora de Integrais Definidas e Impróprias

Calcule integrais definidas e impróprias passo a passo

A calculadora tentará calcular a integral definida (isto é, com limites), inclusive no caso impróprio, com os passos mostrados.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{e}^{0}\left( 2 - 3 x \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{\left(2 - 3 x\right)d x}=\frac{x \left(4 - 3 x\right)}{2}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(\frac{x \left(4 - 3 x\right)}{2}\right)|_{\left(x=0\right)}=0$$$

$$$\left(\frac{x \left(4 - 3 x\right)}{2}\right)|_{\left(x=e\right)}=\frac{e \left(4 - 3 e\right)}{2}$$$

$$$\int_{e}^{0}\left( 2 - 3 x \right)dx=\left(\frac{x \left(4 - 3 x\right)}{2}\right)|_{\left(x=0\right)}-\left(\frac{x \left(4 - 3 x\right)}{2}\right)|_{\left(x=e\right)}=- \frac{e \left(4 - 3 e\right)}{2}$$$

Answer: $$$\int_{e}^{0}\left( 2 - 3 x \right)dx=- \frac{e \left(4 - 3 e\right)}{2}\approx 5.64702049147788$$$


Please try a new game Rotatly