Calculadora de Integrais Definidas e Impróprias
Calcule integrais definidas e impróprias passo a passo
A calculadora tentará calcular a integral definida (isto é, com limites), inclusive no caso impróprio, com os passos mostrados.
Solution
Your input: calculate $$$\int_{2}^{4 s}\left( \frac{t^{3}}{2} \right)dt$$$
First, calculate the corresponding indefinite integral: $$$\int{\frac{t^{3}}{2} d t}=\frac{t^{4}}{8}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{t^{4}}{8}\right)|_{\left(t=4 s\right)}=32 s^{4}$$$
$$$\left(\frac{t^{4}}{8}\right)|_{\left(t=2\right)}=2$$$
$$$\int_{2}^{4 s}\left( \frac{t^{3}}{2} \right)dt=\left(\frac{t^{4}}{8}\right)|_{\left(t=4 s\right)}-\left(\frac{t^{4}}{8}\right)|_{\left(t=2\right)}=32 s^{4} - 2$$$
Answer: $$$\int_{2}^{4 s}\left( \frac{t^{3}}{2} \right)dt=32 s^{4} - 2$$$