Calculadora de Integrais Definidas e Impróprias

Calcule integrais definidas e impróprias passo a passo

A calculadora tentará calcular a integral definida (isto é, com limites), inclusive no caso impróprio, com os passos mostrados.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{1}^{e}\left( \ln{\left(x \right)} \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{\ln{\left(x \right)} d x}=x \left(\ln{\left(x \right)} - 1\right)$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(x \left(\ln{\left(x \right)} - 1\right)\right)|_{\left(x=e\right)}=0$$$

$$$\left(x \left(\ln{\left(x \right)} - 1\right)\right)|_{\left(x=1\right)}=-1$$$

$$$\int_{1}^{e}\left( \ln{\left(x \right)} \right)dx=\left(x \left(\ln{\left(x \right)} - 1\right)\right)|_{\left(x=e\right)}-\left(x \left(\ln{\left(x \right)} - 1\right)\right)|_{\left(x=1\right)}=1$$$

Answer: $$$\int_{1}^{e}\left( \ln{\left(x \right)} \right)dx=1$$$


Please try a new game Rotatly