Calculadora de Integrais Definidas e Impróprias

Calcule integrais definidas e impróprias passo a passo

A calculadora tentará calcular a integral definida (isto é, com limites), inclusive no caso impróprio, com os passos mostrados.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{0}^{x}\left( \frac{1}{x} \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{\frac{1}{x} d x}=\ln{\left(\left|{x}\right| \right)}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(\ln{\left(\left|{x}\right| \right)}\right)|_{\left(x=x\right)}=\ln{\left(\left|{x}\right| \right)}$$$

$$$\left(\ln{\left(\left|{x}\right| \right)}\right)|_{\left(x=0\right)}=-\infty$$$

$$$\int_{0}^{x}\left( \frac{1}{x} \right)dx=\left(\ln{\left(\left|{x}\right| \right)}\right)|_{\left(x=x\right)}-\left(\ln{\left(\left|{x}\right| \right)}\right)|_{\left(x=0\right)}=\ln{\left(\left|{x}\right| \right)} + \infty$$$

Answer: $$$\int_{0}^{x}\left( \frac{1}{x} \right)dx=\ln{\left(\left|{x}\right| \right)} + \infty$$$


Please try a new game Rotatly