Segunda derivada de $$$\cot^{2}{\left(x \right)}$$$
Calculadoras relacionadas: Calculadora de Derivativos, Calculadora de diferenciação logarítmica
Sua entrada
Encontre $$$\frac{d^{2}}{dx^{2}} \left(\cot^{2}{\left(x \right)}\right)$$$.
Solução
Encontre a primeira derivada $$$\frac{d}{dx} \left(\cot^{2}{\left(x \right)}\right)$$$
A função $$$\cot^{2}{\left(x \right)}$$$ é a composição $$$f{\left(g{\left(x \right)} \right)}$$$ de duas funções $$$f{\left(u \right)} = u^{2}$$$ e $$$g{\left(x \right)} = \cot{\left(x \right)}$$$.
Aplique a regra da cadeia $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\cot^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\cot{\left(x \right)}\right)\right)}$$Aplique a regra de poder $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ com $$$n = 2$$$:
$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\cot{\left(x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\cot{\left(x \right)}\right)$$Volte para a variável antiga:
$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\cot{\left(x \right)}\right) = 2 {\color{red}\left(\cot{\left(x \right)}\right)} \frac{d}{dx} \left(\cot{\left(x \right)}\right)$$A derivada da cotangente é $$$\frac{d}{dx} \left(\cot{\left(x \right)}\right) = - \csc^{2}{\left(x \right)}$$$:
$$2 \cot{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\cot{\left(x \right)}\right)\right)} = 2 \cot{\left(x \right)} {\color{red}\left(- \csc^{2}{\left(x \right)}\right)}$$Assim, $$$\frac{d}{dx} \left(\cot^{2}{\left(x \right)}\right) = - 2 \cot{\left(x \right)} \csc^{2}{\left(x \right)}$$$.
Em seguida, $$$\frac{d^{2}}{dx^{2}} \left(\cot^{2}{\left(x \right)}\right) = \frac{d}{dx} \left(- 2 \cot{\left(x \right)} \csc^{2}{\left(x \right)}\right)$$$
Aplique a regra múltipla constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ com $$$c = -2$$$ e $$$f{\left(x \right)} = \cot{\left(x \right)} \csc^{2}{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(- 2 \cot{\left(x \right)} \csc^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(- 2 \frac{d}{dx} \left(\cot{\left(x \right)} \csc^{2}{\left(x \right)}\right)\right)}$$Aplique a regra do produto $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ com $$$f{\left(x \right)} = \csc^{2}{\left(x \right)}$$$ e $$$g{\left(x \right)} = \cot{\left(x \right)}$$$:
$$- 2 {\color{red}\left(\frac{d}{dx} \left(\cot{\left(x \right)} \csc^{2}{\left(x \right)}\right)\right)} = - 2 {\color{red}\left(\frac{d}{dx} \left(\csc^{2}{\left(x \right)}\right) \cot{\left(x \right)} + \csc^{2}{\left(x \right)} \frac{d}{dx} \left(\cot{\left(x \right)}\right)\right)}$$A derivada da cotangente é $$$\frac{d}{dx} \left(\cot{\left(x \right)}\right) = - \csc^{2}{\left(x \right)}$$$:
$$- 2 \cot{\left(x \right)} \frac{d}{dx} \left(\csc^{2}{\left(x \right)}\right) - 2 \csc^{2}{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\cot{\left(x \right)}\right)\right)} = - 2 \cot{\left(x \right)} \frac{d}{dx} \left(\csc^{2}{\left(x \right)}\right) - 2 \csc^{2}{\left(x \right)} {\color{red}\left(- \csc^{2}{\left(x \right)}\right)}$$A função $$$\csc^{2}{\left(x \right)}$$$ é a composição $$$f{\left(g{\left(x \right)} \right)}$$$ de duas funções $$$f{\left(u \right)} = u^{2}$$$ e $$$g{\left(x \right)} = \csc{\left(x \right)}$$$.
Aplique a regra da cadeia $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$- 2 \cot{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\csc^{2}{\left(x \right)}\right)\right)} + 2 \csc^{4}{\left(x \right)} = - 2 \cot{\left(x \right)} {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\csc{\left(x \right)}\right)\right)} + 2 \csc^{4}{\left(x \right)}$$Aplique a regra de poder $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ com $$$n = 2$$$:
$$- 2 \cot{\left(x \right)} {\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\csc{\left(x \right)}\right) + 2 \csc^{4}{\left(x \right)} = - 2 \cot{\left(x \right)} {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\csc{\left(x \right)}\right) + 2 \csc^{4}{\left(x \right)}$$Volte para a variável antiga:
$$- 4 \cot{\left(x \right)} {\color{red}\left(u\right)} \frac{d}{dx} \left(\csc{\left(x \right)}\right) + 2 \csc^{4}{\left(x \right)} = - 4 \cot{\left(x \right)} {\color{red}\left(\csc{\left(x \right)}\right)} \frac{d}{dx} \left(\csc{\left(x \right)}\right) + 2 \csc^{4}{\left(x \right)}$$A derivada da cossecante é $$$\frac{d}{dx} \left(\csc{\left(x \right)}\right) = - \cot{\left(x \right)} \csc{\left(x \right)}$$$:
$$- 4 \cot{\left(x \right)} \csc{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\csc{\left(x \right)}\right)\right)} + 2 \csc^{4}{\left(x \right)} = - 4 \cot{\left(x \right)} \csc{\left(x \right)} {\color{red}\left(- \cot{\left(x \right)} \csc{\left(x \right)}\right)} + 2 \csc^{4}{\left(x \right)}$$Simplificar:
$$4 \cot^{2}{\left(x \right)} \csc^{2}{\left(x \right)} + 2 \csc^{4}{\left(x \right)} = \left(-4 + \frac{6}{\sin^{2}{\left(x \right)}}\right) \csc^{2}{\left(x \right)}$$Assim, $$$\frac{d}{dx} \left(- 2 \cot{\left(x \right)} \csc^{2}{\left(x \right)}\right) = \left(-4 + \frac{6}{\sin^{2}{\left(x \right)}}\right) \csc^{2}{\left(x \right)}$$$.
Portanto, $$$\frac{d^{2}}{dx^{2}} \left(\cot^{2}{\left(x \right)}\right) = \left(-4 + \frac{6}{\sin^{2}{\left(x \right)}}\right) \csc^{2}{\left(x \right)}$$$.
Responder
$$$\frac{d^{2}}{dx^{2}} \left(\cot^{2}{\left(x \right)}\right) = \left(-4 + \frac{6}{\sin^{2}{\left(x \right)}}\right) \csc^{2}{\left(x \right)}$$$A