Derivada de $$$x^{2} \sin{\left(x \right)}$$$

A calculadora encontrará a derivada de $$$x^{2} \sin{\left(x \right)}$$$ usando a diferenciação logarítmica, com as etapas mostradas.

Calculadora relacionada: Calculadora de Derivativos

Deixe em branco para detecção automática.
Deixe em branco se não precisar da derivada em um ponto específico.

Se a calculadora não calculou algo ou você identificou um erro, ou tem uma sugestão/comentário, escreva nos comentários abaixo.

Sua entrada

Encontre $$$\frac{d}{dx} \left(x^{2} \sin{\left(x \right)}\right)$$$.

Solução

Seja $$$H{\left(x \right)} = x^{2} \sin{\left(x \right)}$$$.

Pegue o logaritmo de ambos os lados: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(x^{2} \sin{\left(x \right)}\right)$$$.

Reescreva o RHS usando as propriedades dos logaritmos: $$$\ln\left(H{\left(x \right)}\right) = 2 \ln\left(x\right) + \ln\left(\sin{\left(x \right)}\right)$$$.

Diferencie separadamente os dois lados da equação: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(2 \ln\left(x\right) + \ln\left(\sin{\left(x \right)}\right)\right)$$$.

Diferencie o LHS da equação.

A função $$$\ln\left(H{\left(x \right)}\right)$$$ é a composição $$$f{\left(g{\left(x \right)} \right)}$$$ de duas funções $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = H{\left(x \right)}$$$.

Aplique a regra da cadeia $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$

A derivada do logaritmo natural é $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$

Volte para a variável antiga:

$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$

Assim, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.

Diferencie o RHS da equação.

A derivada de uma soma/diferença é a soma/diferença das derivadas:

$${\color{red}\left(\frac{d}{dx} \left(2 \ln\left(x\right) + \ln\left(\sin{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(2 \ln\left(x\right)\right) + \frac{d}{dx} \left(\ln\left(\sin{\left(x \right)}\right)\right)\right)}$$

Aplique a regra múltipla constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ com $$$c = 2$$$ e $$$f{\left(x \right)} = \ln\left(x\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(2 \ln\left(x\right)\right)\right)} + \frac{d}{dx} \left(\ln\left(\sin{\left(x \right)}\right)\right) = {\color{red}\left(2 \frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + \frac{d}{dx} \left(\ln\left(\sin{\left(x \right)}\right)\right)$$

A função $$$\ln\left(\sin{\left(x \right)}\right)$$$ é a composição $$$f{\left(g{\left(x \right)} \right)}$$$ de duas funções $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = \sin{\left(x \right)}$$$.

Aplique a regra da cadeia $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\sin{\left(x \right)}\right)\right)\right)} + 2 \frac{d}{dx} \left(\ln\left(x\right)\right) = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + 2 \frac{d}{dx} \left(\ln\left(x\right)\right)$$

A derivada do logaritmo natural é $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right) + 2 \frac{d}{dx} \left(\ln\left(x\right)\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right) + 2 \frac{d}{dx} \left(\ln\left(x\right)\right)$$

Volte para a variável antiga:

$$2 \frac{d}{dx} \left(\ln\left(x\right)\right) + \frac{\frac{d}{dx} \left(\sin{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = 2 \frac{d}{dx} \left(\ln\left(x\right)\right) + \frac{\frac{d}{dx} \left(\sin{\left(x \right)}\right)}{{\color{red}\left(\sin{\left(x \right)}\right)}}$$

A derivada do seno é $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:

$$2 \frac{d}{dx} \left(\ln\left(x\right)\right) + \frac{{\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}}{\sin{\left(x \right)}} = 2 \frac{d}{dx} \left(\ln\left(x\right)\right) + \frac{{\color{red}\left(\cos{\left(x \right)}\right)}}{\sin{\left(x \right)}}$$

A derivada do logaritmo natural é $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:

$$2 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} = 2 {\color{red}\left(\frac{1}{x}\right)} + \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}$$

Simplificar:

$$\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} + \frac{2}{x} = \frac{\frac{x}{\tan{\left(x \right)}} + 2}{x}$$

Assim, $$$\frac{d}{dx} \left(2 \ln\left(x\right) + \ln\left(\sin{\left(x \right)}\right)\right) = \frac{\frac{x}{\tan{\left(x \right)}} + 2}{x}$$$.

Portanto, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = \frac{\frac{x}{\tan{\left(x \right)}} + 2}{x}$$$.

Portanto, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \frac{\left(\frac{x}{\tan{\left(x \right)}} + 2\right) H{\left(x \right)}}{x} = x \left(x \cos{\left(x \right)} + 2 \sin{\left(x \right)}\right)$$$.

Responder

$$$\frac{d}{dx} \left(x^{2} \sin{\left(x \right)}\right) = x \left(x \cos{\left(x \right)} + 2 \sin{\left(x \right)}\right)$$$A