Encontre $$$\sqrt[3]{8}$$$
Sua entrada
Encontre $$$\sqrt[3]{8}$$$.
Solução
A forma polar de $$$8$$$ é $$$8 \left(\cos{\left(0 \right)} + i \sin{\left(0 \right)}\right)$$$ (para ver as etapas, consulte calculadora de forma polar).
De acordo com a Fórmula de De Moivre, todas as raízes $$$n$$$-ésimas de um número complexo $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$ são dadas por $$$r^{\frac{1}{n}} \left(\cos{\left(\frac{\theta + 2 \pi k}{n} \right)} + i \sin{\left(\frac{\theta + 2 \pi k}{n} \right)}\right)$$$, $$$k=\overline{0..n-1}$$$.
Temos que $$$r = 8$$$, $$$\theta = 0$$$ e $$$n = 3$$$.
- $$$k = 0$$$: $$$\sqrt[3]{8} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 0}{3} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 0}{3} \right)}\right) = 2 \left(\cos{\left(0 \right)} + i \sin{\left(0 \right)}\right) = 2$$$
- $$$k = 1$$$: $$$\sqrt[3]{8} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 1}{3} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 1}{3} \right)}\right) = 2 \left(\cos{\left(\frac{2 \pi}{3} \right)} + i \sin{\left(\frac{2 \pi}{3} \right)}\right) = -1 + \sqrt{3} i$$$
- $$$k = 2$$$: $$$\sqrt[3]{8} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 2}{3} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 2}{3} \right)}\right) = 2 \left(\cos{\left(\frac{4 \pi}{3} \right)} + i \sin{\left(\frac{4 \pi}{3} \right)}\right) = -1 - \sqrt{3} i$$$
Resposta
$$$\sqrt[3]{8} = 2$$$A
$$$\sqrt[3]{8} = -1 + \sqrt{3} i\approx -1 + 1.732050807568877 i$$$A
$$$\sqrt[3]{8} = -1 - \sqrt{3} i\approx -1 - 1.732050807568877 i$$$A
Please try a new game Rotatly