Integraal van $$$x^{2} + \operatorname{asin}{\left(x \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \left(x^{2} + \operatorname{asin}{\left(x \right)}\right)\, dx$$$.
Oplossing
Integreer termgewijs:
$${\color{red}{\int{\left(x^{2} + \operatorname{asin}{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{x^{2} d x} + \int{\operatorname{asin}{\left(x \right)} d x}\right)}}$$
Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:
$$\int{\operatorname{asin}{\left(x \right)} d x} + {\color{red}{\int{x^{2} d x}}}=\int{\operatorname{asin}{\left(x \right)} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\int{\operatorname{asin}{\left(x \right)} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Voor de integraal $$$\int{\operatorname{asin}{\left(x \right)} d x}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Zij $$$\operatorname{u}=\operatorname{asin}{\left(x \right)}$$$ en $$$\operatorname{dv}=dx$$$.
Dan $$$\operatorname{du}=\left(\operatorname{asin}{\left(x \right)}\right)^{\prime }dx=\frac{dx}{\sqrt{1 - x^{2}}}$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{1 d x}=x$$$ (de stappen zijn te zien »).
Dus,
$$\frac{x^{3}}{3} + {\color{red}{\int{\operatorname{asin}{\left(x \right)} d x}}}=\frac{x^{3}}{3} + {\color{red}{\left(\operatorname{asin}{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{\sqrt{1 - x^{2}}} d x}\right)}}=\frac{x^{3}}{3} + {\color{red}{\left(x \operatorname{asin}{\left(x \right)} - \int{\frac{x}{\sqrt{1 - x^{2}}} d x}\right)}}$$
Zij $$$u=1 - x^{2}$$$.
Dan $$$du=\left(1 - x^{2}\right)^{\prime }dx = - 2 x dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$x dx = - \frac{du}{2}$$$.
De integraal kan worden herschreven als
$$\frac{x^{3}}{3} + x \operatorname{asin}{\left(x \right)} - {\color{red}{\int{\frac{x}{\sqrt{1 - x^{2}}} d x}}} = \frac{x^{3}}{3} + x \operatorname{asin}{\left(x \right)} - {\color{red}{\int{\left(- \frac{1}{2 \sqrt{u}}\right)d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=- \frac{1}{2}$$$ en $$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$:
$$\frac{x^{3}}{3} + x \operatorname{asin}{\left(x \right)} - {\color{red}{\int{\left(- \frac{1}{2 \sqrt{u}}\right)d u}}} = \frac{x^{3}}{3} + x \operatorname{asin}{\left(x \right)} - {\color{red}{\left(- \frac{\int{\frac{1}{\sqrt{u}} d u}}{2}\right)}}$$
Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=- \frac{1}{2}$$$:
$$\frac{x^{3}}{3} + x \operatorname{asin}{\left(x \right)} + \frac{{\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}}{2}=\frac{x^{3}}{3} + x \operatorname{asin}{\left(x \right)} + \frac{{\color{red}{\int{u^{- \frac{1}{2}} d u}}}}{2}=\frac{x^{3}}{3} + x \operatorname{asin}{\left(x \right)} + \frac{{\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}=\frac{x^{3}}{3} + x \operatorname{asin}{\left(x \right)} + \frac{{\color{red}{\left(2 u^{\frac{1}{2}}\right)}}}{2}=\frac{x^{3}}{3} + x \operatorname{asin}{\left(x \right)} + \frac{{\color{red}{\left(2 \sqrt{u}\right)}}}{2}$$
We herinneren eraan dat $$$u=1 - x^{2}$$$:
$$\frac{x^{3}}{3} + x \operatorname{asin}{\left(x \right)} + \sqrt{{\color{red}{u}}} = \frac{x^{3}}{3} + x \operatorname{asin}{\left(x \right)} + \sqrt{{\color{red}{\left(1 - x^{2}\right)}}}$$
Dus,
$$\int{\left(x^{2} + \operatorname{asin}{\left(x \right)}\right)d x} = \frac{x^{3}}{3} + x \operatorname{asin}{\left(x \right)} + \sqrt{1 - x^{2}}$$
Voeg de integratieconstante toe:
$$\int{\left(x^{2} + \operatorname{asin}{\left(x \right)}\right)d x} = \frac{x^{3}}{3} + x \operatorname{asin}{\left(x \right)} + \sqrt{1 - x^{2}}+C$$
Antwoord
$$$\int \left(x^{2} + \operatorname{asin}{\left(x \right)}\right)\, dx = \left(\frac{x^{3}}{3} + x \operatorname{asin}{\left(x \right)} + \sqrt{1 - x^{2}}\right) + C$$$A