Integraal van $$$\frac{x}{\left(x + 1\right) \left(x + 2\right)}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{x}{\left(x + 1\right) \left(x + 2\right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{x}{\left(x + 1\right) \left(x + 2\right)}\, dx$$$.

Oplossing

Voer een ontbinding in partiële breuken uit (stappen zijn te zien »):

$${\color{red}{\int{\frac{x}{\left(x + 1\right) \left(x + 2\right)} d x}}} = {\color{red}{\int{\left(\frac{2}{x + 2} - \frac{1}{x + 1}\right)d x}}}$$

Integreer termgewijs:

$${\color{red}{\int{\left(\frac{2}{x + 2} - \frac{1}{x + 1}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x + 1} d x} + \int{\frac{2}{x + 2} d x}\right)}}$$

Zij $$$u=x + 1$$$.

Dan $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = du$$$.

De integraal wordt

$$\int{\frac{2}{x + 2} d x} - {\color{red}{\int{\frac{1}{x + 1} d x}}} = \int{\frac{2}{x + 2} d x} - {\color{red}{\int{\frac{1}{u} d u}}}$$

De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\int{\frac{2}{x + 2} d x} - {\color{red}{\int{\frac{1}{u} d u}}} = \int{\frac{2}{x + 2} d x} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

We herinneren eraan dat $$$u=x + 1$$$:

$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + \int{\frac{2}{x + 2} d x} = - \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)} + \int{\frac{2}{x + 2} d x}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=2$$$ en $$$f{\left(x \right)} = \frac{1}{x + 2}$$$:

$$- \ln{\left(\left|{x + 1}\right| \right)} + {\color{red}{\int{\frac{2}{x + 2} d x}}} = - \ln{\left(\left|{x + 1}\right| \right)} + {\color{red}{\left(2 \int{\frac{1}{x + 2} d x}\right)}}$$

Zij $$$u=x + 2$$$.

Dan $$$du=\left(x + 2\right)^{\prime }dx = 1 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = du$$$.

Dus,

$$- \ln{\left(\left|{x + 1}\right| \right)} + 2 {\color{red}{\int{\frac{1}{x + 2} d x}}} = - \ln{\left(\left|{x + 1}\right| \right)} + 2 {\color{red}{\int{\frac{1}{u} d u}}}$$

De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \ln{\left(\left|{x + 1}\right| \right)} + 2 {\color{red}{\int{\frac{1}{u} d u}}} = - \ln{\left(\left|{x + 1}\right| \right)} + 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

We herinneren eraan dat $$$u=x + 2$$$:

$$- \ln{\left(\left|{x + 1}\right| \right)} + 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - \ln{\left(\left|{x + 1}\right| \right)} + 2 \ln{\left(\left|{{\color{red}{\left(x + 2\right)}}}\right| \right)}$$

Dus,

$$\int{\frac{x}{\left(x + 1\right) \left(x + 2\right)} d x} = - \ln{\left(\left|{x + 1}\right| \right)} + 2 \ln{\left(\left|{x + 2}\right| \right)}$$

Voeg de integratieconstante toe:

$$\int{\frac{x}{\left(x + 1\right) \left(x + 2\right)} d x} = - \ln{\left(\left|{x + 1}\right| \right)} + 2 \ln{\left(\left|{x + 2}\right| \right)}+C$$

Antwoord

$$$\int \frac{x}{\left(x + 1\right) \left(x + 2\right)}\, dx = \left(- \ln\left(\left|{x + 1}\right|\right) + 2 \ln\left(\left|{x + 2}\right|\right)\right) + C$$$A


Please try a new game Rotatly