Integraal van $$$\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)\, dy$$$.

Oplossing

Integreer termgewijs:

$${\color{red}{\int{\left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)d y}}} = {\color{red}{\left(\int{\frac{1}{2 \sqrt{y}} d y} + \int{\frac{\sqrt{y}}{2} d y}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(y \right)} = \sqrt{y}$$$:

$$\int{\frac{1}{2 \sqrt{y}} d y} + {\color{red}{\int{\frac{\sqrt{y}}{2} d y}}} = \int{\frac{1}{2 \sqrt{y}} d y} + {\color{red}{\left(\frac{\int{\sqrt{y} d y}}{2}\right)}}$$

Pas de machtsregel $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=\frac{1}{2}$$$:

$$\int{\frac{1}{2 \sqrt{y}} d y} + \frac{{\color{red}{\int{\sqrt{y} d y}}}}{2}=\int{\frac{1}{2 \sqrt{y}} d y} + \frac{{\color{red}{\int{y^{\frac{1}{2}} d y}}}}{2}=\int{\frac{1}{2 \sqrt{y}} d y} + \frac{{\color{red}{\frac{y^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}}{2}=\int{\frac{1}{2 \sqrt{y}} d y} + \frac{{\color{red}{\left(\frac{2 y^{\frac{3}{2}}}{3}\right)}}}{2}$$

Pas de constante-veelvoudregel $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(y \right)} = \frac{1}{\sqrt{y}}$$$:

$$\frac{y^{\frac{3}{2}}}{3} + {\color{red}{\int{\frac{1}{2 \sqrt{y}} d y}}} = \frac{y^{\frac{3}{2}}}{3} + {\color{red}{\left(\frac{\int{\frac{1}{\sqrt{y}} d y}}{2}\right)}}$$

Pas de machtsregel $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=- \frac{1}{2}$$$:

$$\frac{y^{\frac{3}{2}}}{3} + \frac{{\color{red}{\int{\frac{1}{\sqrt{y}} d y}}}}{2}=\frac{y^{\frac{3}{2}}}{3} + \frac{{\color{red}{\int{y^{- \frac{1}{2}} d y}}}}{2}=\frac{y^{\frac{3}{2}}}{3} + \frac{{\color{red}{\frac{y^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}=\frac{y^{\frac{3}{2}}}{3} + \frac{{\color{red}{\left(2 y^{\frac{1}{2}}\right)}}}{2}=\frac{y^{\frac{3}{2}}}{3} + \frac{{\color{red}{\left(2 \sqrt{y}\right)}}}{2}$$

Dus,

$$\int{\left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)d y} = \frac{y^{\frac{3}{2}}}{3} + \sqrt{y}$$

Vereenvoudig:

$$\int{\left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)d y} = \frac{\sqrt{y} \left(y + 3\right)}{3}$$

Voeg de integratieconstante toe:

$$\int{\left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)d y} = \frac{\sqrt{y} \left(y + 3\right)}{3}+C$$

Antwoord

$$$\int \left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)\, dy = \frac{\sqrt{y} \left(y + 3\right)}{3} + C$$$A


Please try a new game Rotatly