Integraal van $$$\sqrt{x - 2} + 1$$$

De calculator zal de integraal/primitieve functie van $$$\sqrt{x - 2} + 1$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \left(\sqrt{x - 2} + 1\right)\, dx$$$.

Oplossing

Integreer termgewijs:

$${\color{red}{\int{\left(\sqrt{x - 2} + 1\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\sqrt{x - 2} d x}\right)}}$$

Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=1$$$:

$$\int{\sqrt{x - 2} d x} + {\color{red}{\int{1 d x}}} = \int{\sqrt{x - 2} d x} + {\color{red}{x}}$$

Zij $$$u=x - 2$$$.

Dan $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = du$$$.

De integraal wordt

$$x + {\color{red}{\int{\sqrt{x - 2} d x}}} = x + {\color{red}{\int{\sqrt{u} d u}}}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=\frac{1}{2}$$$:

$$x + {\color{red}{\int{\sqrt{u} d u}}}=x + {\color{red}{\int{u^{\frac{1}{2}} d u}}}=x + {\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=x + {\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$

We herinneren eraan dat $$$u=x - 2$$$:

$$x + \frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = x + \frac{2 {\color{red}{\left(x - 2\right)}}^{\frac{3}{2}}}{3}$$

Dus,

$$\int{\left(\sqrt{x - 2} + 1\right)d x} = x + \frac{2 \left(x - 2\right)^{\frac{3}{2}}}{3}$$

Voeg de integratieconstante toe:

$$\int{\left(\sqrt{x - 2} + 1\right)d x} = x + \frac{2 \left(x - 2\right)^{\frac{3}{2}}}{3}+C$$

Antwoord

$$$\int \left(\sqrt{x - 2} + 1\right)\, dx = \left(x + \frac{2 \left(x - 2\right)^{\frac{3}{2}}}{3}\right) + C$$$A


Please try a new game Rotatly