Integraal van $$$\sin{\left(2 x \right)} \cos{\left(x \right)}$$$

De calculator zal de integraal/primitieve functie van $$$\sin{\left(2 x \right)} \cos{\left(x \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \sin{\left(2 x \right)} \cos{\left(x \right)}\, dx$$$.

Oplossing

Herschrijf de integraand met behulp van de formule $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$, met $$$\alpha=2 x$$$ en $$$\beta=x$$$:

$${\color{red}{\int{\sin{\left(2 x \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{2}\right)d x}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(x \right)} = \sin{\left(x \right)} + \sin{\left(3 x \right)}$$$:

$${\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\sin{\left(x \right)} + \sin{\left(3 x \right)}\right)d x}}{2}\right)}}$$

Integreer termgewijs:

$$\frac{{\color{red}{\int{\left(\sin{\left(x \right)} + \sin{\left(3 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\sin{\left(x \right)} d x} + \int{\sin{\left(3 x \right)} d x}\right)}}}{2}$$

De integraal van de sinus is $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$\frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{2} = \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{2}$$

Zij $$$u=3 x$$$.

Dan $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{du}{3}$$$.

Dus,

$$- \frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\int{\sin{\left(3 x \right)} d x}}}}{2} = - \frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{2}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{3}$$$ en $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$- \frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{2} = - \frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}}{2}$$

De integraal van de sinus is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$- \frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{6} = - \frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{6}$$

We herinneren eraan dat $$$u=3 x$$$:

$$- \frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{6} = - \frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left({\color{red}{\left(3 x\right)}} \right)}}{6}$$

Dus,

$$\int{\sin{\left(2 x \right)} \cos{\left(x \right)} d x} = - \frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{6}$$

Voeg de integratieconstante toe:

$$\int{\sin{\left(2 x \right)} \cos{\left(x \right)} d x} = - \frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{6}+C$$

Antwoord

$$$\int \sin{\left(2 x \right)} \cos{\left(x \right)}\, dx = \left(- \frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{6}\right) + C$$$A


Please try a new game Rotatly