Integraal van $$$\sin{\left(n x \right)}$$$ met betrekking tot $$$x$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \sin{\left(n x \right)}\, dx$$$.
Oplossing
Zij $$$u=n x$$$.
Dan $$$du=\left(n x\right)^{\prime }dx = n dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{du}{n}$$$.
De integraal wordt
$${\color{red}{\int{\sin{\left(n x \right)} d x}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{n} d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{n}$$$ en $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{n} d u}}} = {\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{n}}}$$
De integraal van de sinus is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{n} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{n}$$
We herinneren eraan dat $$$u=n x$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{n} = - \frac{\cos{\left({\color{red}{n x}} \right)}}{n}$$
Dus,
$$\int{\sin{\left(n x \right)} d x} = - \frac{\cos{\left(n x \right)}}{n}$$
Voeg de integratieconstante toe:
$$\int{\sin{\left(n x \right)} d x} = - \frac{\cos{\left(n x \right)}}{n}+C$$
Antwoord
$$$\int \sin{\left(n x \right)}\, dx = - \frac{\cos{\left(n x \right)}}{n} + C$$$A