Integraal van $$$\frac{\ln\left(x\right)}{\ln\left(a\right)}$$$ met betrekking tot $$$x$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{\ln\left(x\right)}{\ln\left(a\right)}\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{\ln{\left(a \right)}}$$$ en $$$f{\left(x \right)} = \ln{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\ln{\left(x \right)}}{\ln{\left(a \right)}} d x}}} = {\color{red}{\frac{\int{\ln{\left(x \right)} d x}}{\ln{\left(a \right)}}}}$$
Voor de integraal $$$\int{\ln{\left(x \right)} d x}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Zij $$$\operatorname{u}=\ln{\left(x \right)}$$$ en $$$\operatorname{dv}=dx$$$.
Dan $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{1 d x}=x$$$ (de stappen zijn te zien »).
De integraal wordt
$$\frac{{\color{red}{\int{\ln{\left(x \right)} d x}}}}{\ln{\left(a \right)}}=\frac{{\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}}{\ln{\left(a \right)}}=\frac{{\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}}{\ln{\left(a \right)}}$$
Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=1$$$:
$$\frac{x \ln{\left(x \right)} - {\color{red}{\int{1 d x}}}}{\ln{\left(a \right)}} = \frac{x \ln{\left(x \right)} - {\color{red}{x}}}{\ln{\left(a \right)}}$$
Dus,
$$\int{\frac{\ln{\left(x \right)}}{\ln{\left(a \right)}} d x} = \frac{x \ln{\left(x \right)} - x}{\ln{\left(a \right)}}$$
Vereenvoudig:
$$\int{\frac{\ln{\left(x \right)}}{\ln{\left(a \right)}} d x} = \frac{x \left(\ln{\left(x \right)} - 1\right)}{\ln{\left(a \right)}}$$
Voeg de integratieconstante toe:
$$\int{\frac{\ln{\left(x \right)}}{\ln{\left(a \right)}} d x} = \frac{x \left(\ln{\left(x \right)} - 1\right)}{\ln{\left(a \right)}}+C$$
Antwoord
$$$\int \frac{\ln\left(x\right)}{\ln\left(a\right)}\, dx = \frac{x \left(\ln\left(x\right) - 1\right)}{\ln\left(a\right)} + C$$$A