Integraal van $$$\cos^{2}{\left(\theta \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \cos^{2}{\left(\theta \right)}\, d\theta$$$.
Oplossing
Pas de machtsreductieformule $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ toe met $$$\alpha=\theta$$$:
$${\color{red}{\int{\cos^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\int{\left(\frac{\cos{\left(2 \theta \right)}}{2} + \frac{1}{2}\right)d \theta}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(\theta \right)} = \cos{\left(2 \theta \right)} + 1$$$:
$${\color{red}{\int{\left(\frac{\cos{\left(2 \theta \right)}}{2} + \frac{1}{2}\right)d \theta}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(2 \theta \right)} + 1\right)d \theta}}{2}\right)}}$$
Integreer termgewijs:
$$\frac{{\color{red}{\int{\left(\cos{\left(2 \theta \right)} + 1\right)d \theta}}}}{2} = \frac{{\color{red}{\left(\int{1 d \theta} + \int{\cos{\left(2 \theta \right)} d \theta}\right)}}}{2}$$
Pas de constantenregel $$$\int c\, d\theta = c \theta$$$ toe met $$$c=1$$$:
$$\frac{\int{\cos{\left(2 \theta \right)} d \theta}}{2} + \frac{{\color{red}{\int{1 d \theta}}}}{2} = \frac{\int{\cos{\left(2 \theta \right)} d \theta}}{2} + \frac{{\color{red}{\theta}}}{2}$$
Zij $$$u=2 \theta$$$.
Dan $$$du=\left(2 \theta\right)^{\prime }d\theta = 2 d\theta$$$ (de stappen zijn te zien »), en dan geldt dat $$$d\theta = \frac{du}{2}$$$.
Dus,
$$\frac{\theta}{2} + \frac{{\color{red}{\int{\cos{\left(2 \theta \right)} d \theta}}}}{2} = \frac{\theta}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{\theta}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{\theta}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$
De integraal van de cosinus is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\theta}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{\theta}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
We herinneren eraan dat $$$u=2 \theta$$$:
$$\frac{\theta}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{\theta}{2} + \frac{\sin{\left({\color{red}{\left(2 \theta\right)}} \right)}}{4}$$
Dus,
$$\int{\cos^{2}{\left(\theta \right)} d \theta} = \frac{\theta}{2} + \frac{\sin{\left(2 \theta \right)}}{4}$$
Voeg de integratieconstante toe:
$$\int{\cos^{2}{\left(\theta \right)} d \theta} = \frac{\theta}{2} + \frac{\sin{\left(2 \theta \right)}}{4}+C$$
Antwoord
$$$\int \cos^{2}{\left(\theta \right)}\, d\theta = \left(\frac{\theta}{2} + \frac{\sin{\left(2 \theta \right)}}{4}\right) + C$$$A