Integraal van $$$\frac{2 x^{4}}{x^{4} - 1}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{2 x^{4}}{x^{4} - 1}\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=2$$$ en $$$f{\left(x \right)} = \frac{x^{4}}{x^{4} - 1}$$$:
$${\color{red}{\int{\frac{2 x^{4}}{x^{4} - 1} d x}}} = {\color{red}{\left(2 \int{\frac{x^{4}}{x^{4} - 1} d x}\right)}}$$
Herschrijf en splits de breuk:
$$2 {\color{red}{\int{\frac{x^{4}}{x^{4} - 1} d x}}} = 2 {\color{red}{\int{\left(1 + \frac{1}{x^{4} - 1}\right)d x}}}$$
Integreer termgewijs:
$$2 {\color{red}{\int{\left(1 + \frac{1}{x^{4} - 1}\right)d x}}} = 2 {\color{red}{\left(\int{1 d x} + \int{\frac{1}{x^{4} - 1} d x}\right)}}$$
Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=1$$$:
$$2 \int{\frac{1}{x^{4} - 1} d x} + 2 {\color{red}{\int{1 d x}}} = 2 \int{\frac{1}{x^{4} - 1} d x} + 2 {\color{red}{x}}$$
Voer een ontbinding in partiële breuken uit (stappen zijn te zien »):
$$2 x + 2 {\color{red}{\int{\frac{1}{x^{4} - 1} d x}}} = 2 x + 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x^{2} + 1\right)} - \frac{1}{4 \left(x + 1\right)} + \frac{1}{4 \left(x - 1\right)}\right)d x}}}$$
Integreer termgewijs:
$$2 x + 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x^{2} + 1\right)} - \frac{1}{4 \left(x + 1\right)} + \frac{1}{4 \left(x - 1\right)}\right)d x}}} = 2 x + 2 {\color{red}{\left(\int{\frac{1}{4 \left(x - 1\right)} d x} - \int{\frac{1}{4 \left(x + 1\right)} d x} - \int{\frac{1}{2 \left(x^{2} + 1\right)} d x}\right)}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(x \right)} = \frac{1}{x^{2} + 1}$$$:
$$2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - 2 {\color{red}{\int{\frac{1}{2 \left(x^{2} + 1\right)} d x}}} = 2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - 2 {\color{red}{\left(\frac{\int{\frac{1}{x^{2} + 1} d x}}{2}\right)}}$$
De integraal van $$$\frac{1}{x^{2} + 1}$$$ is $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:
$$2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - {\color{red}{\int{\frac{1}{x^{2} + 1} d x}}} = 2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - {\color{red}{\operatorname{atan}{\left(x \right)}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{4}$$$ en $$$f{\left(x \right)} = \frac{1}{x + 1}$$$:
$$2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 {\color{red}{\int{\frac{1}{4 \left(x + 1\right)} d x}}} = 2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{4}\right)}}$$
Zij $$$u=x + 1$$$.
Dan $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = du$$$.
Dus,
$$2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\int{\frac{1}{x + 1} d x}}}}{2} = 2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = 2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
We herinneren eraan dat $$$u=x + 1$$$:
$$2 x - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} = 2 x - \frac{\ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{4}$$$ en $$$f{\left(x \right)} = \frac{1}{x - 1}$$$:
$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 {\color{red}{\int{\frac{1}{4 \left(x - 1\right)} d x}}} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{4}\right)}}$$
Zij $$$u=x - 1$$$.
Dan $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = du$$$.
Dus,
$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\int{\frac{1}{x - 1} d x}}}}{2} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
We herinneren eraan dat $$$u=x - 1$$$:
$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)}$$
Dus,
$$\int{\frac{2 x^{4}}{x^{4} - 1} d x} = 2 x + \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)}$$
Voeg de integratieconstante toe:
$$\int{\frac{2 x^{4}}{x^{4} - 1} d x} = 2 x + \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)}+C$$
Antwoord
$$$\int \frac{2 x^{4}}{x^{4} - 1}\, dx = \left(2 x + \frac{\ln\left(\left|{x - 1}\right|\right)}{2} - \frac{\ln\left(\left|{x + 1}\right|\right)}{2} - \operatorname{atan}{\left(x \right)}\right) + C$$$A